Автомобильный портал - Retrovaz

Допустимые значения силы тока и напряжения. Длительно допустимые токовые нагрузки для кабелей и проводов

Современная жизнь полна разнообразием бытовых приборов и устройств, которые существенно облегчают нам быт, делают его все более комфортным, но одновременно появляется целый комплекс опасных, вредных факторов: электромагнитные поля различных частот, повышенный уровень радиации, шумы, вибрации, опасности механического травмирования, наличие токсичных веществ, а так же самое главное – электрический ток.

Электрическим током называется упорядоченное движение электрических частиц. На человека электрический ток оказывает термическое (нагревание тканей при протекании по ним электрического тока), электролитическое (разложение крови и других жидкостей организма), биологическое (возбуждение живых тканей организма, сопровождается спазмом мышц) действия.

При действии на человека электрического тока возникают электротравмы: электрические ожоги, электрические знаки, металлизация кожи, механические повреждения, ослепление светом электрической дуги (электроофтальмия), электрический удар, электрический шок .

Электрический ожог – это повреждения поверхности тела или внутренних органов под действием электрической дуги или больших токов, проходящих через тело человека. Ожоги бывают двух видов: токовый (или контактный) и дуговой.

Токовый ожог обусловлен прохождением тока непосредственно через тело человека в результате прикосновений к токоведущей части. Токовый ожог – следствие преобразования электрической энергии в тепловую; как правило, это ожог кожи, так как кожа человека обладает во много раз большим электрическим сопротивлением, чем другие ткани тела.

Токовые ожоги возникают при работе на электроустановках относительно небольшого напряжения (не выше 1-2 кВ) и является в большинстве случаев ожогами I или II степени; впрочем, иногда возникают и тяжелые ожоги.

При напряжениях более высоких между токоведущей частью и телом человека или между токоведущими частями образуется электрическая дуга, которая и вызывает возникновение ожога другого вида – дугового.

Дуговой ожог обусловлен действием на тело электрической дуги, обладающей высокой температурой (свыше 3500 С) и большой энергией. Такой ожог возникает обычно при электроустановках высокого напряжения и носит тяжелый характер – III или IV степени.

Электрические знаки – это пятна серого и бледно-желто цвета, ушибы, царапины на коже человека, которые подвергались действию тока. Сила знака соответствует силе токоведущей части, которой коснулся человек. В большинстве случаев лечение электрических знаков заканчивается благополучно, а пораженное место полностью восстанавливается.

Металлизация кожи – проникновение в верхние слои кожи мельчайших частиц металла, расплавившегося под действием электрической дуги. В пораженном месте кожа становится жесткой, шероховатой и приобретает окраску металла (например, зеленую – от соприкосновения с медью). Работа, связанная с вероятностью возникновения электрической дуги, следует делать в очках, а одежда работника должна быть застегнута на все пуговицы.

Механические повреждения возникает в результате механического движения при непроизвольном судорожном сокращении мышц и требуют долгого лечения.

Электроофтальмия – это воспаление наружных оболочек глаз, возникающее под воздействием мощного потока ультрафиолетовых лучей. Такое облучение возможно при образовании электрической дуги (короткое замыкание), которая интенсивно излучает не только видимый свет, но и ультрафиолетовые и инфракрасные лучи.

Электрический удар – это возбуждение живых тканей организма проходящим через них электрическим током, сопровождающееся непроизвольными судорожными сокращениями мышц. Степень отрицательного воздействия этих явлений на организм может быть различна. Электрический удар может привести к нарушению и даже полному прекращению деятельности жизненно важных органов – легких и сердца, а значит, и к гибели организма. Внешних местных повреждений человек при этом может и не иметь.

В зависимости от исхода поражения электрические удары могут быть условно разделены на четыре степени, из которых каждая характеризуется определенными проявлениями:

I – судороги без потери сознания;

II – судороги с потерей сознания, но с сохранившимися дыханием и работой сердца;

III – потеря сознания и нарушение сердечной деятельности или дыхания (либо того и другого вместе);

IV – клиническая смерть.

Причинами смерти от электрического тока могут быть прекращение работы сердца, прекращение дыхания и электрический шок.

Работа сердца может прекратиться в результате или прямого воздействия тока на мышцу сердца, или рефлекторного действия, когда сердце не лежит на пути тока. В обоих случаях может произойти остановка сердца или наступить его фибрилляция, т.е. беспорядочное сокращение и расслабление мышечных волокон сердца. Фибрилляция обычно продолжается очень недолго и сменяется полной остановкой сердца. Если сразу же не оказана первая помощь, то наступает клиническая смерть.

Прекращение дыхания вызывается непосредственным или рефлекторным действием тока на мышцы грудной клетки, участвующие в процессе дыхания.

Электрический шок – своеобразная реакция нервной системы в ответ на сильное раздражение электрическим током. Проявляется расстройством кровообращения, дыхания. Шок может длиться от нескольких десятков минут до суток после чего организм гибнет.

Основным фактором, обусловливающим исход поражения током, является величина тока, проходящего через тело человека. По технике безопасности электрический ток классифицируется следующим образом:

Безопасным считается ток, длительное прохождение которого через организм человека не причиняет ему вреда и не вызывает никаких ощущений, его величина не более 50 мкА (переменный ток 50 Гц) и 100 мкА постоянного тока;

Минимально ощутимый человеком переменный ток составляет около 0,6-1,5 мА (переменный ток 50 Гц) и 5-7 мА постоянного тока;

Пороговым неотпускающим называется минимальный ток такой силы, при которой человек уже неспособен усилием воли оторвать руки от токоведущей части. Для переменного тока это – 10-15 мА, для постоянного – 50-80 мА;

Фибрилляционным порогом называется сила тока около 100 мА (50 Гц) и 300 мА постоянного тока, воздействие которого дольше 0,5 секунд с большой вероятностью вызывает фибрилляцию сердечных мышц. Этот порог одновременно считается условно смертельным для человека.

Постоянный ток является менее опасным, чем переменный. Практически безопасным для человека в сырых помещениях можно считать напряжение до 12 В, в сухих помещениях – до 36 В. Вероятность поражения человека электрическим током зависит от климатических условий в помещении (температуры, влажности), а также токопроводящей пыли, металлических конструкций, соединенных с землей, токопроводящего пола и т.д. Опасные зоны – лицо, ладонь, промежность. Опасные пути – рука-голова, рука-рука, две руки-две ноги.

Тяжесть поражения усиливают: алкогольное опьянение, утомление, истощение, хронические заболевания, старческий или детский возраст.

В соответствии с «Правилами устройства электроустановок потребителей» (ПУЭ) все помещения делят на три класса:

· без повышенной опасности – нежаркие (до +35°С), сухие (до 60%), непыльные, с нетокопроводящим полом, не загроможденные оборудованием;

· с повышенной опасностью – имеют, по крайней мере, один фактор повышенной опасности, т.е. жаркие или влажные (до 75%), пыльные, с токопроводящим полом и т.п.;

· особо опасные – имеют два или более факторов повышенной опасности или, по крайней мере, один фактор особый опасности, т.е. особую сырость (до 100%) или наличие химически активной среды.

Статическое электричество – это потенциальный запас электрической энергии, образующейся на оборудовании в результате трения, индукционного влияния сильных электрических разрядов. В помещениях с большим количеством пыли органического происхождения могут образоваться статические разряды (пожаро- и взрывоопасность), а также накапливаться на людях при пользовании бельем и одеждой из щелка, шерсти и искусственных волокон, при движении по ток непроводящему синтетическому покрытию пола, типа линолеума, ковролина и т.д.

Для защиты от поражения электрическим током при работе с электрооборудованием, включённым в сеть, необходимо использовать общие и индивидуальные электрозащитные средства .

К общим электрозащитным средствам относят: ограждение; заземление; зануление и отключение корпусов техники, которые могут быть под напряжением; применение безопасного напряжения 12-36 В; плакаты, вывешиваемые у опасных мест; автоматические воздушные выключатели (предостерегающие, запрещающие, напоминающие). Хорошее состояние изоляции электроустановок – одно из самых важных условий безопасности. Значение изоляции сети заключается в том, чтобы избежать возможности замыканий электропроводки возникновения очагов возгорания, а также уменьшить расходы электроэнергии из-за утечки тока. Защитное заземление, зануление или автоматическое отключение предназначены для снижения напряжения или полного отключения электроустановок, корпуса которой оказались под напряжением. Обычно применяют искусственные заземлители: специально забиваемые в землю металлические стержни, трубы, металлические полосы, горизонтально вкладываемые в землю. Для заземления возможно использовать металлические конструкции зданий, металлические трубы водопровода, соприкасающиеся с землей.

Индивидуальные защитные средства подразделяются на основные (изолирующие штанги всех видов; изолирующие клещи; указатели напряжения; электроизмерительные клещи; диэлектрические перчатки; ручной изолирующий инструмент) и дополнительные (диэлектрические галоши; диэлектрические ковры и изолирующие подставки; изолирующие колпаки, покрытия и накладки; лестницы приставные, стремянки изолирующие стеклопластиковые).

Схема 1. Алгоритм первой помощи при поражении электротоком

При оказании помощи сначала нужно освободить человека от действия электрического тока. Самое безопасное – быстро вывернуть пробки, если несчастный случай произошел в доме. Если по каким-либо причинам это сделать невозможно, то необходимо бросить себе под ноги резиновый коврик, доску или толстую ткань либо надеть на ноги резиновые сапоги или галоши; можно надеть на руки хозяйственные резиновые перчатки. Пострадавшего оттащить от провода, схватившись одной рукой за одежду. В зоне падения высоковольтного провода передвигаться необходимо мелкими шашками, не расставляя широко ноги. Можно также попытаться отодвинуть самого пострадавшего от источника тока либо отстранить от него источник. Сделать это нужно одной рукой, чтобы даже при получении удара ток не прошел через все тело того, кто оказывает помощь.

После отключения тока (освобождения пострадавшего) необходимо действовать в соответствие с представленным алгоритмом (схема 1).

Независимо от состояния пострадавшего, необходимо вызвать врача и до его приезда обеспечить полный покой и наблюдение за ним. Отсутствие тяжелых симптомов после поражения не означает, что в последующем состояние пострадавшего не ухудшится (паралич дыхания и остановка сердца иногда наступают не сразу,а в течение последующих 2-3 часов).

Вопросы для самоконтроля знаний

1. Дать определения понятий: «производственная среда», «опасное химическое вещество», «аварийно химически опасное вещество», «токсичность», «токсикант», «токсин», «токсический процесс», «вредное вещество, «резорбция», «депонирование», «элиминация», «механизм токсического действия», «световой поток», «сила света», «освещенность», «яркость», «механические колебания», «периодические колебания», «амплитуда колебаний», «период колебаний», «вибрация», «звук», «шум», «электромагнитное поле», «ионизирующее излучение», «изотопы», «радиоактивность», «активность», «период полураспада», «статическое электричество».

2. Классификация негативных факторов среды обитания человека и их краткая характеристика.

3. Техносфера – как среда обитания. Качественные изменения среды обитания.

4. Классификация потенциально опасных веществ. Понятие о ядах.

5. Пути поступления вредных веществ в организм и их характеристика. Депонирование вредных веществ. Элиминация. Фазы биотрансформации.

6. Классификация вредных веществ по классу опасности. Типы дей-ствия комбинированных ядов.

7. Механизм формирования и развития токсического процесса на разных уровнях биологической организации.

8. Освещенность. Ее качественные и количественные показатели. Ко-эффициент естественной освещенности.

9. Механические колебания. Их разновидности.

10. Основные характеристики и классификация вибрации. Понятие о вибрационной болезни.

11. Звук. Шум и его характеристики. Мероприятия борьбы с шумом.

12. Электромагнитные поля. Нормирования и мероприятия по защите от воздействия электромагнитных полей.

13. Инфракрасное (ИК) излучение. Его влияние на организм человека.

14. Ультрафиолетовое излучение. Его влияние на человека и использование в промышленности.

15. Ионизирующее излучение. Его виды и источники. Применение в промышленности и медицине.

16. Электрический ток. Воздействие на организм человека электрического тока. Электрические ожоги. Электрические знаки. Металлизация кожи. Механические повреждения. Электроофтальмия.

17. Электрический удар, электрический шок.

18. Классы помещений в соответствии с «Правилами устройства электроустановок потребителей». Понятие о статическом электричестве.

19. Общие и индивидуальные электрозащитные средства.

20. Алгоритм первой помощи при поражении электротоком.

Для правильного проектирования способов и средств защиты лю­дей от поражения электрическим током необходимо знать допустимые уровни напряжений прикосновения и значений токов, протекающих че­рез тело человека.

Напряжением прикосновения называется напряжение между дву­мя точками цепи тока, которых одновременно касается человек. Предельно допустимые значения напряжений прикосновения U ПД и то­ков I ПД, про­текающих через тело человека по пути "рука – рука" или "рука – ноги" при нормальном (неаварийном) режиме электроустановки, согласно ГОСТ 12.1.038-82* приведены в табл. 1.

При аварийном режиме производственных и бытовых приборов и электроустановок напряжением до 1000 В с любым режимом нейтрали предельно допустимые значения U ПД и I ПД не должны превышать значе­ний, приведенных в табл. 2. Аварийный режим означает, что электроус­тановка неисправна, и могут возникнуть опасные ситуации, приводящие к электротравмам.

При продолжительности воздействия более 1 с величины U ПД и I ПД соответствуют отпускающим значениям для переменного и условно неболевым для постоянного токов.

Таблица 1

Предельно допустимые значения напряжений прикосновения и токов

в нормальном режиме работы электроустановки

Примечание. Напряжения прикосновения и токи для лиц, выпол­няющих работу в условиях высоких температур (выше 25 С) и влажно­сти (отно­сительная влажность более 75 %), должны быть уменьшены в 3 раза.

Таблица 2

Предельно допустимые значения напряжения прикосновения

и токов в аварийном режиме работы электроустановки

Продолжительность действия электриче­ского тока, с

Производственные

электроустановки

Бытовые приборы,

электроустановки

4. Электрическое сопротивление тела человека

Значение тока через тело человека сильно влияет на тяжесть элек­тро­травм. В свою очередь, сам ток согласно закону Ома определяется со­противлением тела человека и приложенным к нему напряжением, т.е. напряжением прикосновения.

Проводимость живых тканей обусловлена не только физическими свой­ствами, но и сложнейшими биохимическими и биофизическими процес­сами, присущими лишь живой материи. Поэтому сопротивление тела человека является комплексной переменной величиной, имеющей нели­нейную зависимость от множества факторов, в том числе от со­стояния кожи, окружающей среды, центральной нервной системы, фи­зиологиче­ских факторов. На практике под сопротивлением тела чело­века пони­мают модуль его комплексного сопротивления.

Электрическое сопротивление различных тканей и жидкостей тела человека не оди­наково: кожа, кости, жировая ткань, сухожилия имеют отно­си­тельно большое сопротивление, а мышечная ткань, кровь, лимфа, нервные волокна, спинной и головной мозг – малое сопротив­ле­ние.

Сопротивление тела человека, т.е. сопротивление между двумя электродами, наложенными на поверхность тела, в основном определя­ется сопротивлением кожи. Кожа состоит из двух основных слоев: на­ружного (эпидермис) и внутреннего (дер­ма).

Эпидермис можно условно представить состоящим из рогового и росткового слоев. Роговой слой состоит из мертвых ороговевших кле­ток, лишен кровеносных сосудов и нервов и поэтому является слоем неживой ткани. Толщина этого слоя колеблется в пределах 0,05 – 0,2 мм. В сухом и незагрязненном состоянии роговой слой можно рассмат­ривать как пористый диэлектрик, пронизанный множеством протоков сальных и потовых желез и обладающий большим удельным сопротивле­нием. Ростковый слой примыкает к роговому слою и состоит в основ­ном из живых клеток. Электрическое сопротивление этого слоя благо­даря наличию в нём отмирающих и находящихся на стадии ороговения клеток может в несколько раз превышать сопротивление внутреннего слоя кожи (дермы) и внутренних тканей организма, хотя по сравнению с сопротивлением рогового слоя оно невелико.

Дерма состоит из волокон соединитель­ной ткани, образующих густую, прочную, эластичную сетку. В этом слое находятся кровеносные и лимфатические сосуды, нервные оконча­ния, корни волос, а также потовые и сальные железы, выводные про­токи которых выходят на поверхность кожи, пронизывая эпидермис. Электрическое сопротивление дермы, являющейся живой тканью, неве­лико.

Полное сопротивление тела человека есть сумма сопротивлений тканей, расположенных на пути протекания тока. Основным физиоло­гическим фактором, определяющим величину полного сопротивления тела человека, является состояние кожного покрова в цепи тока. При сухой, чистой и неповрежденной коже сопротивление тела человека, измеренное при напряжении 15 - 20 В, колеблется от единиц до десят­ков кОм. Если на участке кожи, где прикладываются электроды, со­скоблить роговой слой, сопротивление тела упадет до 1 – 5 кОм, а при удалении всего эпидермиса – до 500 – 700 Ом. Если под электродами полностью удалить кожу, то будет измерено сопротивление внутренних тканей, которое составляет 300 – 500 Ом.

Для приближённого анализа процессов протекания тока по пути "рука – рука" через два одинаковых электрода может быть использован упрощённый вариант эквивалентной схемы цепи протекания электриче­ского тока через тело человека (рис. 1).

Рис. 1. Эквивалентная схема сопротивления тела человека

На рис. 1 обозначено: 1 – электроды; 2 – эпидермис; 3 – внутрен­ние ткани и органы тела человека, включая дерму; İ h – ток, протекаю­щий через тело человека; Ů h – напряжение, приложенное к электродам; R Н – активное сопротивление эпидермиса; C Н – ёмкость условного кон­денсатора, обкладками которого являются электрод и хорошо проводя­щие ток ткани тела человека, расположенные под эпидермисом, а ди­электриком – сам эпидермис; R ВН – активное сопротивление внутренних тканей, включая дерму.

Из схемы рис. 1 следует, что комплексное сопротивление тела человека определяется соотношением

где Z Н = (jС Н) -1 = -jХ Н – комплексное сопротивление емкости С Н;

Х Н – модуль Z Н; f , f – частота переменного тока.

В дальнейшем под сопротивлением тела человека будем подразу­мевать модуль его комплексного сопротивления:

. (1)

На высоких частотах (больше 50 кГц) Х Н =1/(C Н) << R ВН, и сопротивления R Н оказываются практически закороченными ма­лыми сопротивлениями емкостей C Н. Поэтому на высоких частотах со­противление тела человека z h в приближенно равно сопротивлению его внутренних тканей: R ВН z h в. (2)

При постоянном токе в установившемся режиме емкостные сопро­тивления являются бесконечно большими (при 
0 Х Н

). Поэтому сопротивление тела человека постоянному току

R h = 2R Н + R ВН. (3)

Из выражений (2) и (3) можно определить

R Н = (R h -z h в)/2. (4)

На основе выражений (1) – (4) можно получить формулу для вы­числения величины емкости C н:

, (5)

где z hf - модуль комплексного сопротивления тела на частоте f ;

C Н имеет размерность мкФ; z hf , R h и R ВН – кОм; f - кГц.

Выражения (2) – (5) позволяют определить параметры эквивалент­ной схемы (рис. 1) по результатам экспериментальных измерений.

Электрическое сопротивление тела человека зависит от ряда фак­торов. Повреждения рогового слоя кожи могут снизить сопротивление тела человека до величины его внутреннего сопротивления. Увлажнение кожи может понизить ее сопротивление на 30 – 50 %. Влага, попавшая на кожу, растворяет находящиеся на ее поверхности минеральные веще­ства и жирные кислоты, выведенные из организма вместе с потом и жи­ровыми выделениями, становится более электропроводной, улучшает контакт между кожей и электродами, проникает в выводные протоки потовых и жировых желез. При длительном увлажнении кожи ее на­ружный слой разрыхляется, насыщается влагой и его сопротивление может уменьшиться в ещё большей степени.

При кратковременном воздействии на человека теплового облуче­ния или повышенной температуры окружающей среды сопротивле­ние тела человека уменьшается за счёт рефлекторного расширения кро­веносных сосудов. При более длительном воздействии наступает пото­отделение, в результате чего сопротивление кожи уменьшается.

С увеличением площади электродов сопротивление наружного слоя кожи R Н уменьшается, емкость С Н увеличивается, а сопротивление тела человека уменьшается. При частотах свыше 20 кГц указанное влияние площади электродов практически утрачивается.

Сопротивление тела человека зависит также и от места приложе­ния электродов, что объясняется различной толщиной рогового слоя кожи, неравномерным распределением потовых желез на поверхности тела, неодинаковой степенью наполнения кровью сосудов кожи.

Прохождение тока через тело человека сопровождается местным нагревом кожи и раздражающим действием, что вызывает рефлекторное расширение сосудов кожи и, соответственно, усиленное снабжение ее кровью и повышенное потоотделение, что, в свою очередь, приводит к снижению сопротивления кожи в данном месте. При небольших напря­жениях (20 -30 В) за 1 – 2 минуты сопротивление кожи под электродами может понизиться на 10 – 40 % (в среднем на 25 %).

Повышение напряжения, приложенного к телу человека, вызывает уменьшение его сопротивления. При напряжениях в десятки вольт это происходит из-за рефлекторных реакций организма в ответ на раздра­жающее действие тока (усиление снабжения сосудов кожи кровью, по­тоотделение). При повышении напряжения до 100 В и выше происхо­дят сначала локальные, а затем и сплошные электрические пробои рого­вого слоя кожи под электродами. По этой причине при напряжениях около 200 В и выше сопротивление тела человека практически равно сопротивлению внутренних тканей R ВН.

При ориентировочной оценке опасности поражения электрическим током сопротивление тела человека принимают равным 1 кОм (R h = 1 кОм). Точное значение расчетных сопротивлений при разработке, рас­чёте и проверке защитных мер в электроустановках выбирается со­гласно ГОСТ 12.038-82*.

В зависимости от продолжительности воздействия на человека

Таблица 2

Род тока Нормируемая величина. Продолжительность воздействия тока t,с
0,01-0,08 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0
Переменный (50Гц) I
U
Постоянный I
U

Допустимые значения напряжения прикосновения и тока проходящего через тело человека используются для разработки комплекса защитных мер и определения параметров защитных устройств, при которых еще возможно обеспечить безопасность. Иногда применяют термин "безопасный ток", который смысла не имеет, так как ток любой величины оказывает некоторое воздействие на организм человека. Так, электрический ток 0,02 - 0,07мА , 50Гц вызывает болевые ощущения в отдельных точках на теле человека. Поэтому правомерно применять понятие "допустимый ток". Величиной допустимого тока следует задаваться исходя их тех пороговых значений тока, при которых появляется реальная опасность. Так, в опасных условиях работы (высота, вблизи движущихся или вращающихся частей и т.д.), когда человек в процессе работы вынужден иметь постоянный контакт с частями находящимися под напряжением, длительно допустимый ток следует принять ниже порога ощущения, не более 0,5мА . При работе в нормальных (безопасных) условиях, в качестве длительно допустимого тока при случайном прикосновении следует принимать порог не допускающего тока, 10мА , так как превышение этой величины тока грозит реальной опасностью.

Частота тока

Установлено, что в сопротивлении тела человека входит и емкостная составляющая:

Поэтому увеличение частоты приложенного напряжения сопровождается уменьшением полного сопротивления тела и ростом тока, проходящего через человека. С ростом тока проходящего через тело человека, опасность поражения возрастает, значит и повышение частоты должно вести к повышению такой опасности.

Однако такое предположение справедливо только в диапазоне частот от 0 до 50 Гц . В области частот от 0 до 50 Гц с уменьшением частоты значение неотпускающего тока возрастает и при частоте, равной нулю (постоянный ток), становится больше примерно в 3 раза (см. рис. 2).

Повышение частоты, выше этого диапазона, несмотря на рост тока, проходящего через тело человека, сопровождается снижением опасности поражения, которая полностью исчезает при частоте 450-500 кГц , т.е. такие токи не могут поразить человека. Однако сохраняется, в этом случае, опасность ожогов при прохождении тока через тело человека и при возникновении электрической дуги.

За опасность поражения принята величина, обратная не отпускающему току при данной частоте, выраженная в процентах. За 100% взята опасность при 50 Гц как наибольшая во всей шкале частот.

Тогда опасность поражения при искомой частоте определяется из выражения

где, - неотпускающие токи при 50 Гц и искомой частоте f , мА .

Упрощенно изменение опасности тока с изменением частоты можно объяснить характером раздражающего действия тока на клетки живой ткани.

Если к клетке живой ткани приложить постоянное напряжение, то во внутриклеточном веществе, которое можно рассматривать как электролит, возникает электролитическая диссоциация, в результате чего будет происходить распад молекул на положительные и отрицательные ионы. Эти ионы начнут перемещаться к оболочке клетки, положительные ионы к отрицательному электроду, а отрицательные – к положительному. Такое явление вызовет нарушение нормального состояния клетки и протекающих в ней естественных биохимических процессов.



При переменном токе ионы будут перемещаться, следуя изменению полярности электродов.

Можно предположить, что в интервале частот от 0 до 50 Гц , большее нарушение естественного состояния клетки вызывает ток, при котором ион делает от одного до нескольких "полных" пробегов за единицу времени внутри оболочки клетки. За опасное состояние, предположительно, можно считать или один "полный" пробег ионов, или максимальное число "полных" пробегов, которые происходят при частоте 50 Гц . Поскольку ионы, как материальные частицы, обладают определенной скоростью перемещения в электролите, то при определенной частоте (очевидно 50 Гц ) ион не успеет достигнуть оболочки клетки, за время изменения полярности. Такое положение будет отвечать, предположительно, меньшему нарушению нормального состояния клетки. При дальнейшем повышении частоты длина пути пробега ионов будет сокращаться и может наступить такой момент, когда движение ионов прекратиться, а следовательно, будет отсутствовать опасное нарушение состояние клетки. Такое положение возникает при частотах выше 450-500 кГц .

Пути тока

В практике эксплуатации электроустановок при включении человека в электрическую цепь ток через него протекает, как правило, по пути "рука - ноги" или "рука - рука". Однако возможных путей тока в теле человека очень много. Степень поражения в этих случаях зависит от того, какие жизненно важные органы (сердце, легкие, головной мозг) человека попадает под воздействием тока, а также от величины тока непосредственно воздействующего на эти органы и в частности на сердце.

Характерные пути тока (петли тока) в теле человека приведены на рис. 3.


Ток распределяется по всему объему тела, однако наибольшая часть его проходит по пути наименьшего сопротивления - вдоль кровеносных и лимфатических сосудов, нервных стволов и разветвлений.

При этом путь наименьшего сопротивления необязательно должен быть кратчайшим между электродами. Измерения показали, что значение сопротивления тела человека электрическому току при разных петлях тока различно:

- "рука - рука" – 1360 Ом;

- "рука - ноги " – 970 Ом;

- "руки - ноги" - 670 Ом .

Опасность различных петель тока можно оценить, пользуясь данными таблицы 3.

Наиболее опасными являются петли голова – руки, голова - ноги, когда ток может проходить через головной и спинной мозг. Однако эти петли возникают относительно редко. Следующим по опасности является путь правая рука - ноги, когда через сердце по продольной оси протекает наибольший ток.

Несмотря на малую величину тока, протекающего через сердца человека при петле " нога - нога" при шаговом напряжении, равном 80-120 В , происходят судороги ножных мышц, человек падает и, касаясь рукой земли, попадает под большие напряжение, так как петля тока теперь уже будет "руки - ноги" ("рука - нога"), что может привести к поражению электрическим током.

1. Предельно допустимые значения напряжений прикосновения и токов

1.1. Предельно допустимые значения напряжений прикосновения и токов установлены для путей тока от одной руки к другой и от руки к ногам.

(Измененная редакция, Изм. N 1).

1.2. Напряжения прикосновения и токи, протекающие через тело человека при нормальном (неаварийном) режиме электроустановки, не должны превышать значений, указанных в табл. 1 .

Таблица 1

Примечания:

1. Напряжения прикосновения и токи приведены при продолжительности воздействия не более 10 мин в сутки и установлены, исходя из реакции ощущения.

2. Напряжения прикосновения и токи для лиц, выполняющих работу в условиях высоких температур (выше 25°С) и влажности (относительная влажность более 75%), должны быть уменьшены в три раза.

1.3. Предельно допустимые значения напряжений прикосновения и токов при аварийном режиме производственных электроустановок напряжением до 1000 В с глухозаземленной или изолированной нейтралью и выше 1000 В с изолированной нейтралью не должны превышать значений, указанных в табл. 2 .

Таблица 2

Род тока Нормируе-
мая
величина
Предельно допустимые значения, не более, при продолжительности воздействия тока
t, с
0,01-
0,08
0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0 Св.
1,0
Переменный 50 Гц U, В
I, мА
550
650
340
400
160
190
135
160
120
140
105
125
95
105
85
90
75
75
70
65
60
50
20
6
Переменный
400 Гц
U, В
I, мА
650 500 500 330 250 200 170 140 130 110 100 36
8
Постоянный U, В
I, мА
650 500 400 350 300 250 240 230 220 210 200 40
15
Выпрямленный
двухполупериодный
U_ампл, В
I_ампл, мА
650 500 400 300 270 230 220 210 200 190 180 -
Выпрямленный
однополупериодный
U_ампл, В
I_ампл, мА
650 500 400 300 250 200 190 180 170 160 150 -

Примечание. Предельно допустимые значения напряжений прикосновения и токов, протекающих через тело человека при продолжительности воздействия более 1 с, приведенные в табл. 2 , соответствуют отпускающим (переменным) и неболевым (постоянным) токам.

1.4. Предельно допустимые значения напряжений прикосновения при аварийном режиме производственных электроустановок с частотой тока 50 Гц, напряжением выше 1000 В, с глухим заземлением нейтрали не должны превышать значений, указанных в табл. 3 .

Таблица 3

1.5. Предельно допустимые значения напряжений прикосновения и токов при аварийном режиме бытовых электроустановок напряжением до 1000 В и частотой 50 Гц не должны превышать значений, указанных в табл. 4 .

Таблица 4

Примечание. Значения напряжений прикосновения и токов установлены для людей с массой тела от 15 кг.

1.3-1.5. (Измененная редакция, Изм. N 1).

1.6. Защиту человека от воздействия напряжений прикосновения и токов обеспечивают конструкция электроустановок, технические способы и средства защиты, организационные и технические мероприятия по

Сила тока, проходящего через тело человека, является основным фактором, который предопределяет последствия поражения. Различные по величине токи производят и разное влияние на организм человека

Различают три основных пороговые значения силы тока:

Пороговый ощутимый ток - наименьшее значение электрического тока, вызывающего при прохождении через организм человека ощутимые раздражения;

Пороговый невидпускаючий ток - наименьшее значение электрического тока, которое вызывает судорожные сокращения мышц руки, в которой зажат проводник, делает невозможным самостоятельное освобождение человека от действия й тока

Пороговый фибриляцийний (смертельно опасен) ток - наименьшее значение электрического тока, вызывающего при прохождении через тело человека фибрилляцию сердца

В таблице 71 приведены пороговые значения силы тока при его прохождении через тело человека путем"рука - рука"или"рука - ноги"

Ток (переменный и постоянный) более 5. А вызывает мгновенную остановку сердца, минуя состояние фибрилляции

Таблица 71. Пороговые значения переменного и постоянного тока

Чем выше значение напряжения, тем больше опасность поражения электрическим током. Условно безопасной для жизни человека принято считать напряжение не превышает 42. В (в Украине такое напряжение в зависимости от условий р работы и среды составляет 36 и 12. В), при которой не должен произойти пробой кожи человека, что приводит к резкому уменьшению общего сопротивления ее"тел; тіла.

Электрическое сопротивление тела человека зависит, в основном, от состояния кожи и центральной нервной системы. Для расчетов сопротивление тела человека условно принимают равным. Я - 1 кОм. При увлажнении, загрязнении и по ошкодженни кожи (потоотделения, порезы, царапины и т.п.), увеличении приложенного напряжения, площади контакта, частоты тока и времени его действия сопротивление тела человека уменьшается до определенного минимального значения (0,5-0,7 кОмм).

Вид и частота тока, проходящего через тело человека, также влияют на последствия поражения. Постоянный ток примерно в 4-5 раз безопаснее переменный. Однако частота переменного тока также приводит на аслидкы поражения. Так, наиболее опасным считается переменный ток частотой 20-100. Гц. При частоте, меньшей чем 20 или превышающим 100. Гц, опасность поражения током заметно уменьшается ток частотой п онад 500 кГц не может смертельно поразить человека, однако очень часто вызывает ожогопіки.

Путь прохождения тока через тело человека? возможных путей прохождения тока через тело человека (петель тока), их характеристики приведены в табл 72. Как видно из таблицы, наибольшую опасность представляет путь"голова - руки"(при нем доля пот ерпилих, что теряли сознание, составляет 92%), за ним идет -"голова - ноги", затем -"правая рука - ноги", а наименьшую опасность представляет путь"нога - ногаезпеку становить шлях "нога - нога".

Таблица 72. Характеристика наиболее распространенных путей прохождения тока через тело человека

Путь тока

Частота возникновения данного

пути тока,%

Доля пострадавших, которые теряли

сознание в течение действия

Значение тока, проходящего через сердце,% от общего

тока, проходящего через тело

Рука - рука

Правая рука - ноги

Левая рука - ноги

Нога - нога

Председатель - ноги

Председатель - руки

Допустимые значения токов и напряжений

Напряжение прикосновения - это напряжение между двумя точками электрической цепи, к которым одновременно прикасается человек

Предельно допустимые значения напряжения прикосновения и силы тока для нормального (безаварийного) и аварийного режимов электроустановок при прохождении тока через тело человека путем"рука - рука"или"р рука - ноги"регламентируются с помощью. ГОСТ 121038-82 (табл. 73 12.1.038-82 (табл. 7.3).

При выполнении работы в условиях высокой температуры (более 25 °. С) и относительной влажности воздуха (более 75%) значения табл 73 необходимо уменьшить в три раза

Понравилась статья? Поделитесь с друзьями!
Была ли эта статья полезной?
Да
Нет
Спасибо, за Ваш отзыв!
Что-то пошло не так и Ваш голос не был учтен.
Спасибо. Ваше сообщение отправлено
Нашли в тексте ошибку?
Выделите её, нажмите Ctrl + Enter и мы всё исправим!