Автомобильный портал - Retrovaz

Россия успешно испытала антигравитационный двигатель леонова. Анти гравитационный двигатель сергеева Использование гравитационных двигателей на практике

Гравитационный двигательдлительное время был несбыточной мечтой. Ученые создавали теоретические формулы, которые демонстрировали возможность создания и использования подобных устройств. Однако на практике это было неосуществимо. Эффект гравитации, который планировалось использовать, работал непродолжительно и то, если ему придавалась определенная сила. Изобретатели проектировали и изготавливали различные устройства, которые позволили бы достичь успеха. Однако добиться логического завершения никому не удалось.

Лишь в последнее время благодаря развитию науки появились возможности и гравитационный двигатель начал приобретать практическое очертание. Длительное время отсутствие возможности постройки подобного изделия было вызвано тем, что по закону Ньютона работа, выполняемая полем в отношении замкнутого контура, равняется нулю. Сегодня же в основу возможности создания подобного устройства используют теорию относительности. Одним из вариантов в этом направлении является использование магнитно-гравитационного движка и устройства на новых физических принципах.

Виды

Гравитационный двигательв зависимости от типа конструкции и используемой энергии может быть:

  • Механические . Это всевозможные конструкции движков, которые ученые создают еще с давних времен. Одним из типичных представителей таких двигателей является колесо, на котором при помощи ниток навешаны грузы. При толчке колесо начинает крутиться. Изначально, кажется, что колесо будет крутиться постоянно, однако через некоторое время оно останавливается. Вызвано это тем, что грузы с разных сторон уравновешиваются.

  • Гидромеханические . Используется для преобразования силы выталкивания воды и тяготения в механическую энергию. Типичным представителем подобных устройств являются поплавковые двигатели. Поплавки с помощью нити и проволоки связываются в цепь. В воде они под действием силы выталкивания всплывают, а на воздухе на них действует сила тяжести. В результате они могут вращать присоединенное к ним колесо, но также ограниченное время. Проблемой здесь является то, что поплавкам приходится преодолевать сопротивление воды, чтобы погрузиться. В результате получается такой же замкнутый контур.

  • Капиллярные . Такие двигатели работают благодаря капиллярному эффекту, поднимая воду на вершину. Затем вода падает вниз, заставляя крутиться колесо. Однако здесь также есть минус – воду будет удерживать капиллярный эффект, поднимающий ее первоначально.

  • Магнитно-гравитационные . Такие устройства работают благодаря постоянным магнитам. Работа такого агрегата основывается на переменном перемещении магнитиков относительно главного магнита или какого-либо груза.

  • Гравитационный двигатель , работающий на новых физических принципах создания тяги.


Устройство

Гравитационный двигатель, работающий на гидромеханическом принципе, имеет следующее устройство. Главным элементом конструкции выступает плунжерная пара, состоящая из цилиндра и поршня, создающая камеру сжатия. Поршень в то же время способен двигаться внутри цилиндра под действием своего веса. При наличии наклона по отношению к горизонту, поршень перемещается по наклонной, постепенно всасывая либо выталкивая воду из камеры сжатия.

Плунжерные пары соединяются между собой при помощи трубы, откуда вода способна перетекать из одной камеры в другую. Подобная система вращается относительно точки подвеса, которая находится в неподвижном состоянии.

В магнитных двигателях применяются постоянные магниты, грузы и дисковый постоянный магнит. Появление магнитных сил, образующихся между постоянными магнитами. В том числе при помощи силы гравитации позволяет создавать постоянное вращение ротора относительно статорного магнита в виде кольца.

Принцип действия

Гидромеханический движок работает благодаря перемещению жидкости в камере и силе тяжести. Плунжерные пары при вертикальном положении имеют воду в нижней камере сжатия. При отклонении системы от указанного положения поршни направляются в стороны. В этот момент в верхнем поршне образуется вакуум, а в нижнем появляется определенное давление. В результате жидкость направляется из нижней камеры в верхнюю. Постепенно верхняя камера при накоплении жидкости начинает перевешивать нижнюю. В результате система получает ускорение и начинает вращаться.

Гравитационный двигательна магнитном принципе работает следующим образом. При приближении грузов к оси вращения одного магнита, они начинают отталкиваться к противоположному полюсу. Благодаря постоянному смещению центра массы, а также перемены сил гравитации и действия магнитных полей, двигатель может работать практически вечно. При правильной сборке движка хватит небольшого толчка, чтобы запустить его в работу. В результате он сможет раскрутиться до максимальной скорости.

В гравитационном движке, работающем на новых физических принципах создания тяги, создается высоковольтный разряд. Он приводит к испарению рабочего тела, к примеру, фторопласта. В результате образуется тяга.

Как выбрать

Большинство из представленных на рынке гравитационных устройств не могут работать вечно. Им нужен толчок определенной силы, чтобы заставить работать. Да, такое устройство сможет вращаться определенное время, но через некоторое время остановиться. В особенности это касается моделей, работающих на механических и гидравлических и физических принципах. Они не будут долго работать.

Поэтому стоит присмотреться к магнитным движкам. Они будут работать на порядок дольше. Желательно выбирать не самодельные, а заводские варианты, которые будут работать и смогут прослужить на порядок дольше.

Применение

Гравитационный двигательредко находит практическое применение. Преимущественно такие изделия используются для демонстрации их возможностей. Также они находят применением в быту и бизнесе, чтобы развлекать партнеров, домочадцев и приходящих гостей. В промышленности или других сферах такие устройства практически не применяются.

Однако сегодня проводятся испытания и разрабатываются гравитационные движки, которые в скором времени смогут найти достойное применение. К примеру, это касается российских ученых, которые начали испытывать принципиально новый двигатель, работающий на новых физических принципах, связанных с гравитацией. Данный движок уже поработал на космическом аппарате «Юбилейный». Это агрегат в последующем должен применяться на космическом аппарате, который входит в систему, создаваемую Россией и Белоруссией.

Устройство, которое работает без расхода тела уже испытано на Земле. Этот двигатель получил название «гравицапа». В будущем эти гравитационные движки можно будет использовать для космических аппаратов, в особенности для наноспутников. Такой двигатель будет миниатюрным и сможет работать бесконечно долго. Гравитационные движки на новых физических принципах планируется испытывать в космических условиях.

Содержание:

С давних пор ведутся работы по использованию альтернативных источников энергии в различных устройствах. Среди многих вариантов следует отметить гравитационный двигатель, работающий не на традиционных видах топлива, а использующий эффект гравитации. Специальная форма вместе с различными приспособлениями дает возможность достаточно эффективно использовать гравитационное поле Земли. Данное устройство относится к категории , которые еще никому не удавалось изобрести и довести до логического завершения. Поэтому в данной статье такой двигатель может рассматриваться лишь с теоретической точки зрения.

Принцип действия гравитационного устройства

В процессе вращения двигатель будет подвержен , сопротивлению воздуха и влиянию других факторов. В качестве примера рассматривается конструкция, состоящая из герметичных S-образных элементов. Каждый из них наполняется водой и воздухом в пропорции 1:1. При каждом цикле вращения данной конструкции, из гравитационного поля будут поступать небольшое количество энергии.

Если суммарное количество энергии, поступившее от каждого элемента за весь цикл, превысит затраты двигателя на преодоление трения и других факторов, то устройством постепенно начнут набираться обороты. Это будет происходить до тех пор, пока под действием центробежных сил не перестанут проявляться гравитационные эффекты. Таким образом, гравитационный двигатель изначально требует хорошей раскрутки, как и другие движущие устройства. Типичным примером служит автомобильный двигатель внутреннего сгорания, который заводился разными способами: вначале - специальной рукояткой, а в современных условиях - стартером. В данном случае от количества S-образных элементов зависит мощность гравитационного двигателя.

Работа водяного двигателя происходит по определенной схеме. Вначале его нужно хорошо раскрутить в направлении часовой стрелки. После этого участок с водой будет находиться в горизонтальном положении, а вода перетечет из одного колена в другое. Участок, освобожденный от воды, начнет ускоренное вращение.

В это же время вода совершает перемещение в горизонтальном направлении, пересекая силовые линии гравитационного поля. Следовательно, не совершая никакой работы, заполнит пустой участок трубы, который под действием силы тяжести начнет двигаться вниз. Таким образом, за счет постоянного перелива двигатель будет вращаться. Управление движением осуществляется за счет момента инерции, заложенного в S-образной трубе.

В результате вращения двигатель постепенно достигает определенной скорости, после чего энергия, полученная частями, отдается в нагрузку. Кроме подключения к какому-либо полезному устройству, она затрачивается на преодоление сопротивления воздуха и силы трения. Достигнув определенной скорости вращения, двигатель начнет работу в режиме автоматических колебаний. Гравитация будет препятствовать снижению скорости вращения, и она же будет ее ограничивать за счет сосредоточения воды в наружном конце трубы, из-за чего существенно понижается гравитационный эффект.

Для того чтобы улучшить динамические свойства двигателя, на обоих концах вращающегося элемента следует разместить герметичные эластичные емкости, наполненные небольшим количеством воздуха. В процессе вращения они будут выполнять по отношению к воде функцию своеобразной пружины.

Использование гравитационных двигателей на практике

В настоящее время двигатели, не требующие топлива, не нашли практического применения и рассматриваются лишь в качестве интересной игрушки. Чаще всего они выступают только как наглядное подтверждение теоретических изысканий и расчетов.

Однако при повышении эффективности данных устройств, они вполне смогут нормально работать и приносить реальную пользу. Для этого необходимо произвести группировку основного элемента с такими же конструкциями. Такое соединение даст возможность получить более высокую мощность и равномерное вращение. Все детали помещаются на общей оси вращения и располагаются под разными углами относительно друг друга. Вместо воды можно использовать ртуть или специальные грузики, значительно повышающие эффективность устройства.

Подобные двигатели могут быть непосредственно встроены в вагонные или машинные колеса. Таким образом, появляется реальная возможность самостоятельного движения механизмов без участия традиционных электродвигателей. Практически получается своеобразный самокат.

Принцип работы гравитационных двигателей можно уже сейчас использовать в конструкциях колес автомобилей и других механических устройств. За счет этого вполне возможно снижение расхода топлива или увеличение тяги. Основной проблемой может стать выбор наиболее оптимальной конструкции гравитационного двигателя для того или иного типа колес. Подобные устройства не потребляют кислород и совершенно безопасны в пожарном отношении. Непременным условием работы таких двигателей является их обязательная предварительная раскрутка.

Как повысить эффективность гравитационного устройства

Повысить эффективность гравитационного двигателя возможно с помощью изменения всей конструкции. То есть, вместо колеса, за основу можно взять, например, маятник. Для этого понадобится бачок, наполненный водой. Большое значение имеет правильный выбор параметров: размер емкости, плотность поплавка и жидкости в бачке, вес груза, а также обе высоты, обозначенные на рисунке.

Правильно выполненная конструкция будет работать до полного износа всех деталей и успешно выполнять свое предназначение в различных устройствах. Для повышения эффективности такого маятника рекомендуется несколько изменить его конструкцию. В процессе колебаний она будет вести себя по-другому.

В качестве груза используется цилиндр, разделенный на отсеки. В первом отсеке находится жидкость или ртуть, а также поплавок, наполненный воздухом. Другой отсек наполнен воздухом и содержит груз с жидкостью или ртутью. Этот груз соединяется с поплавком с помощью штока, в связи с этим, перемещение одного из них оказывает влияние на перемещение другого. То есть, груз и поплавок взаимно связаны между собой.

Жидкость, вытесненная поплавком, должна иметь вес, превышающий массу груза в воздушном отсеке. Размер поплавка выбирается таким образом, чтобы он не шатался внутри отсека с жидкостью. Это предотвратит поломку тока и уменьшит сопротивление.

Теоретически можно допустить, что все колебания маятника совершаются только в одной плоскости. Когда колебания достигнут достаточной амплитуды, центр тяжести маятника будет изменяться относительно оси вращения в точке крепления. Данное изменение происходит в зависимости от угла отклонения всей конструкции. В максимальной верхней точке груз в воздушном отсеке приблизится к днищу цилиндра, а в самой нижней точке он начнет подниматься вверх. Это движение осуществляется под действием силы Архимеда.

Принимая непосредственное участие в рабочем процессе, эта сила передает маятнику определенное количество энергии, равное проделанной работе. Если все составные части маятника подобраны удачно и оптимально, это поможет ему быстрее войти в режим автоматических колебаний и пользоваться исключительно энергией гравитационного поля.

Конструкция магнитно-гравитационного двигателя

К одному из вариантов вечного двигателя можно отнести магнитно-гравитационное устройство, основой которого служит постоянный магнит. Принцип действия такой конструкции заключается в перемещении вспомогательных грузов вокруг основного магнита.

Все магниты по очереди взаимодействуют с силовыми полями по мере приближения того или иного груза одним из полюсов к оси вращения. Далее происходит отталкивание к другому полюсу. Таким образом, постоянно чередующиеся гравитационные силы, смещение центра массы, взаимодействие постоянных магнитов между собой обеспечивают практически вечную работу двигателя.

При условии правильной сборки магнитного двигателя, для начала его работы достаточно всего лишь небольшого толчка, после чего он сам начнет набирать максимальную скорость в процессе раскручивания. Самое главное - правильно выполнить все технические требования, соблюдая установленные параметра и размеры магнитов и грузов.

Антагравитационный двигатель В.В.Сергеева.

E-mail:[email protected]

Часть. 1 Теоретические обоснования антигравитации у меня, конечно, есть, они находятся на моем сайте. Но начну со знаний на уровне обывателя. В 1996 году я сидел в городском сквере, а мимо меня проносились подростки на скейтбордах, маленьких тележках на четырех колесиках. Асфальтовая дорожка, по которой они катились, шла под уклон в 7-8 градусов. Докатившись до конца дорожки, они подъезжали к параллельной дорожке и вверх по склону они уже катились, отталкиваясь одной ногой от земли. Вдруг, к дорожке подъехал наиболее ловкий и искусный подросток, и не касаясьногами земли поехал в гору. При этом он приседал, а затем резко поднимался, извиваясь всем телом и со скоростью около двух метров в секунду ехал вверх по склону. Так он проехал более 100 метров, на моих глазах полностью опровергнув третий закон Ньютона. Сначала я подумал, что это, какое то чудо. Но вот к дорожке подьехал другой, такой же искусный мальчишка и полностью повторил маневр. Тогда стало ясно, что это не чудо, а научный факт, который ждет своего объяснения. Надо полагать, что подобную же картину могли наблюдать сотни миллионов людей во всем мире. Смотрели и не видели. Я же увидел, потому что у меня уже были модели, подтверждающие существование антигравитации. Более трех месяцев, я упорно пытался найти разгадку феномена. Исписав гору бумаги, но так и не найдя решение, я сдался. Но вот спустя шесть лет, меня осенило. Математический маятник и правильно установленный резиновый амортизатор - и проблема решена. Решение настолько простое, что его может повторить любой человек, занимавшийся моделированием. Для этого не нужно даже знать физику, надо только иметь каплю здравого смысла. В этом году случилось и другое событие, более похожее на какую-то мистику. По электронной почте получил письмо от таинственного Виталия Сенкевича - жителя Москвы. Озадачил электронный обратный адрес:<ха-ха-ха-ха>. Сей таинственный господин представил схему оригинального антигравитационного устройства, но от всяких дальнейших контактов со мной отказался. Когда я внимательно рассмотрел его на первый взгляд замысловатый проект, то обнаружил схему собственного движителя, только максимально упрощенную. Самое сложное в этом проекте - это электродвигатель, с вращающимся статором. Такие двигатели являются учебно-наглядными пособиями по физике для университетов, для демонстрации равенства моментов импульсов ротора и статора. Если момент импульса ротора обозначить M*V*R, а момент импульса статора M"* V"* R", то M*V*R = M"* V"* R", а поскольку ротор и статор вращаются в противоположном направлении, то M*V*R + M"* V"* R" = 0. Именно это равенство обеспечивает значительное упрощение схемы движителя. Различные. Основополагающий принцип - это не сохранение импульса. Это установил еще в 1852 году английский ученый У.Томсон, более известный, как лорд Кельвин". Он установил, что при некоторых необратимых процессах трения, энергия силовых импульсов(f*t)может исчезать, трансформируясь в тепловую энергию. Но ведь энергия силового импульса это и есть сам импульс. Следовательно, импульс может при определенных условиях не сохраняться, До открытия антигравитации оставалось сделать всего лишь один шаг. Но тень великого Ньютона помешала его сделать. В наши дни поиски практической антигравитации идут по пути все большего усложнения антигравитационных устройств. К тому же энергетические затраты на работу этих аппаратов несоизмеримо возрастают. Я же предлагаю простейшие устройства, требующие минимум энергии. Предлагаю наипростейшую конструкцию без реактивного маятникового движителя БМД. В Основе конструкции три основных узла. На платформе устанавливаются две стойки, между которыми находится ось. На оси на двух тягах качается в обе стороны математический чаятник. Вес маятника 1,5 кГ. Длина тяг от оси до центра тяжести маятника 200 мм. Второй узел - это резиновый амортизатор, укрепленный на концах консолей. При падении маятника с высоты 200 мм потенциальная энергия маятника переходит в кинетическую энергию, а кинетическая энергия переходит в энергию растянутого амортизатора. Маятник растягивает амортизатор на 120 мм, пик силы должен составить 1 кГ. Затем все повторяется в обратном направлении. Третий узел = это передача импульса маятнику. Тяга маятника имеет вертикальное продолжение. Чем больше это продолжение, тем меньше надо приложить сил к концу тяги и тем больше приложено сил у оси маятника. Если подсчитать силы действующие в одну сторону и сопоставить их с силами, действующими в другую, то все станет ясно. Если поставить устройство на тележку, то она покатится с тем большей скоростью, чем больше будет амплитуда качаний маятника при свободном ходе. Конечно, это лишь поверхностная схема, на обывательском уровнке, но она работает. Рис 1


Вашему вниманию предлагаются две схемы АГ4:общая схема и схема действующих сил. Сразу же возникает вопрос - почему АГ4?Да потому что есть проект АГ3.Этот проект подтвержден действующей моделью и при испытаниях показал прекрасные результаты. Двигатель мощностью 400 вт показал антигравитационную тягу 1,5 кГ. Если Вы внимательно посмотрите на общую схему, то увидите, что она на 90 % состоит из схемы ЭДВС(эл-ль с вращающимся статором).Остальную часть составляют два тормозных барабана и прижимной ролик. Малый тормозной барабан, металлический и скользит по наждаку, коэффициент трения скольжения k металла по наждаку составит 0,9.Малый барабан насажен на вал статора. Большой барабан насажен на вал ротора и скользит по металлу. Коэффициент скольжения металла по металлу равен 0,1.Прижимной ролик давит на малый барабан с силой Р, но при этом давление в равной мере передается и на большой барабан. Сила трения скольжения подсчитывается по формуле F = P*k. Поэтому сила трения скольжения, которая де йствует на малый тормозной барабан F" будет в 9 раз больше силы трения скольжения, которая действует на большой тормозной барабан. Но поскольку диаметр большого тормозного барабана в 9 раз больше, чем малого, то реактивные моменты, действующие на ротор и статор будут равны. Поскольку реактивные моменты равны и противоположно направлены, то к корпусу электродвигателя приложена сила равная нулю. При этом на систему будет действовать сила (F"- F").Следовательно замкнутая система будет двигаться в направлении вектора силы F". Следует иметь в в ви ду, что тормозные барабаны только притормаживают вращение ротора и статора. Поскольку модель созданная по такому же принципу показывает отличные результаты, то можно быть уверенным на 100 процентов в успехе АГ4. Даже если тяга движителя будет в пределах 1 к Г, то это будет колоссальным про рывом в космических полетах. Ведь малый импульс действующий длительное время действует так же, как большая тяга за небольшое время. Предложенная схема объясняет возникновение антигравитации на уровне только здравого смысла и формальной логики. Действительная причина возникновения анти- гравитации лежит гораздо глубже.


Рис. 3


Рис. 4

Теперь конкретно о деле. Я составил рисунок аппарата, который дает ясное представление о его работе.


Кроме того рисунок подтвержден фотоснимком действующей модели. Аппарат состоит из 14 деталей, которые монтируются на монтажной деревянной доске размером 400*300 мм. 1.Две деревянные стойки, длиной 300 мм, прочно крепятся на краю монтажной доски. Расстояние между стойками 100 мм. 2.Математический маятник - груз 1,5 кГ укрепленный на концк тяг. 3.Ось маятника, крепится к верхним концам стоек. 4.Две тяги,которые крепятся нижними концами к маятнику, а верхними вдеваются в ось, для этого в верхних концах тяг просверливаются отверстия. Расстояние между отверстиями и центром тяжести маятника равно 200 мм. Чтобы зафиксировать тяги, между стойками вставляются трубки, ограничивающие скольжение тяг вдоль оси. Одна из тяг имеет продолжение на высоту как минимум 300 мм. 5.К стойкам, на высоте центра тяжести маятника крепятся две консоли. Параллельно основанию. Длина каждой консоли 150 мм. 6.К концам консолей крепится мощный резиновый амортизатор. В моей модели амортизатор состоит из 12 резиновых нитей,каждая нить растягивается силой 80 грамм.Весь амортизатор растягивается на 100 мм силой 1 кГ. На этом заканчивается изготовление безреактивного движителя. Чтобы проверить его работу, поставим платформу на примитивную четырехколесную тележку. Поднимаем рукой маятник на высоту стоек, а затем отпускаем. Маятник совершит несколько качаний, а тележка будет двигаться в направлении растяжения амортизатора. Теперь рассмотрим подробно механизм работы движителя. Когда мы подняли маятник, то он будет иметь запас потенциальной энергии.При падении маятника вниз его потенциальная энергия перейдет в кинетическую; а затем маятник будет растягивать амортизатор и вся кинетическая энергия перейдет в энергию растянутой резины. Затем амортизатор начинает сжиматься, сообшая маятнику кинетическую энергию. В процессе растяжения и сжатия амортизатора возникает сила, движущая аппварат с тележкой.В 1973 году английские ученые из Нью-Каслинского университета провели эксперимент полностью подтвердивший появление антигравитационной силы в результате подобной смены форм энергии. Для поддержания постоянной амплитуды качаний маятника при свободном ходе, необходимо установить несложный механизм возбуждения качаний. 7.Стойка шкива 8.Шкив. 9-10.К концу тяги-рычага крепится резиновая тяга. Другой конец резиновой тяги крепится к краю шкива. Резиновая тяга состоит из 4 резиновых нитей и растягивается силой более 300 грамм. 11-12-13-14.Электромотор мощностью 40 ватт через редуктор передает импульс маятнику. Шкив вращается со скоростью 2,5 об/сек. Это универсальная схема БМД. По этой схеме можно сделать модель с тягой в несколько десятков грамм и машины для океанских судов в несколько десятков тонн. Величина антигравитационной силы зависит от следующих факторов: 1.Вес маятника. 2.Мощность амортизатора. 3.Величина амплитуды качаний маятника при свободном ходе. Для того,чтобы БМД мог катиться на тележке, вес маятника должен быть не менее 1,5кГ.Но это вовсе не значит, что это минимальный вес маятника. Можно установить маятник весом 250-300 грамм и вместо мотора мо щностью 40 ватт установить мик роэлектромоторчик и батарейку. Если такой аппарат поставить на примитивный плот из пенопласта, а плот спустить на воду, то он буд ет двигаться с заметным ускоре нием.

>


БЕЗРЕАКТИВНОЕ ДВИЖЕНИЕ И АНТИГРАВИТАЦИЯ

Часть 2. Безреактивное движение отличается от антигравитации тем, что оно неразрывно связано с реактиыным движением. Если для антигравитации необходимо, чтобы возник- ло не менее 4 силовых импульсов, то для безреактивного движения необходимо нали- чие двух количественных импульсов(m*v) и двух силовых импульсов(f*t) . Кроме того, безреактивное движение возникает в поле действия силы тяжести. Разуме- ется,силу тяжести можно заменить силой растянутых пружин или электромагнитными силами, но все это требует такого усложнения конструкции движителя, которое иск- лючает применение их, допустим в космической технике. Вместе с тем, безреактивные движители вполне могут применяться в земных условиях, к тому же они несколько проще для восприятия, чем чистая антигравитация и поэтому помогут лучше понять принципы антигравитации. В дальнейшем будем обозначать береактивное движение БД, а антигравитацию АГ. Рассмотрим на конкретном примере принципы возникновения БД. Для этого про- ведем простейший эксперимент. Для опыта нужно иметь материалов на полдоллара и обычную ванну. От металлической трубы, диаметром 75-80 мм отрезаем 4 куска длиной по 200 мм.Вес каждого куска-цилиндра в пределах 150 грамм. Берем пряиоугольный лист пенопласта,толщиной 50 мм, длиной 450 мм и шириной 300 мм. Это будет импровизированный плот. Далее нужно заготовить 3 куска древесно-волокнистой плиты:два куска длиной по 100 мм и шириной 300 мм, один кусок длиной 450 мм и шириной 300 мм. Теперь на одном конце длинного куска ДВП укрепляем под углом 35 -40 градусов короткий кусок ДВП, гладкой стороной вниз, а матовой вверх. Это будет наклонная плоскость. Длинный лист ДВП должен быть матовой стороной вверх. На другом конце ДВП закрепляем другой короткий кусок так, чтобы он образовывал прямой угол с длинным куском. Это будет стопор. Ставим наше импровизированное устройство на пенопластовый плот, спускаем плот в ванну, устройство для экспериментов готово. Закрепляем цилиндр наверху наклонной плоскости нитью, пережигаем нить, цилиндр скатывается по наклонной плоскости и затем катится по горизонтальной плоскости по инерции пока не упрется в стопор. Плот будет двигаться в сторону качения цилиндра. Если теперь будем по очереди класть цилиндры на плоскость, то движение будет продолжаться в течение нескольких секунд, пока катятся цилиндры. Мы получим наипростейший безреактивный движитель, который очень наглядно демонстрирует без- реактивное движение. В физике этот феномене стал известен во второй половине ХХ века. Вот как он изложен в курсе физики для университетов:"если массивный круглый цилиндр катится по горизонтальной плоскости по инерции и без проскальзывания, то возникает трение покоя, которое на движение цилиндра никак не действует и никак себя не проявляет".На этом исследование было прервано и никакой реакции явление у ученой братии не вызвало. А если бы исследование было продолжено до конца, то были бы получены результаты, подтверждающие наличие колоссального парадокса. Дело в том, что сила трения рождает два силовых импульса - равных и противоположно направленных. Один импульс приложен к цилиндру и должен тормозить его поступательное движение. Но по определению этот импульс на цилиндр никак не действует и никакого влияния на его движение не оказывает. Зато второй противоположный импульс, приложенный к плоскости, по которой катится цилиндр, вполне реально действует на плоскость, поэтому и возникает БД. Этот принцип положен в основу модели, которая развивает тягу в 120 грамм. Каждый может убедиться в реальности модели, заглянув на сайт На этом сайте размещены видеоматериалы испытаний модели на крутильных весах. Этот движитель запатентован в Канаде. Принцип работы БМД (безреактивный маятниковый движитель) отличается от БД, хотя для его работы также требуется наличие реактивного движения. Антигравитационные движители(АГ) - это совершенно другие аппараты и принцип их действия абсолютно другой. Тот, кто впервые знакомится с БД, думает, что перед ними пресловутые инерцоиды, хотя БД к ним никакого отношения не имеют. В АГ нет никаких линейно перемещающихся масс, так что никаких оснований заподозрить их в принадлежности к инерцоидам нет. Всего имеется 3 проекта:АГ2,АГ3 и АГ4.Первые два проекта имеют подтверждение в виде действующих моделей.АГ4 - сильно упрощенный вариант движителя мо- дельно не подтвержден.Для его материализации требуется электродвигатель с вращающимся статором. Из всех перечисленных аппаратов, самым перспективным является АГ3. Модель с первичным двигателем 400 ватт развивает тягу в 1,5 кГ.Но эта тяга, при той же мощности первичного двигателя, может быть увеличена за счет конструктивных изменений в несколько раз.

АГ-2 (Антигравитационное устройство-2)

Часть 3. Итак, давайте приступим к работе над АГ2. Для этого разобьем процесс на два этапа. Первый этап - это изготовление действующей модели. Как ни странно, но это очень простая работа. Ког да перед глазами будет действую щая модель, то второй этап - осмысление и восприятие действующих теорети ческих механизмов устройства - пойдет гораздо успешнее.


Основанием модели служит доска размерами в 400 на 500 мм, толщина доски - 25 мм. Основная деталь устройства - металлический цилиндр. Диаметр цилиндра 60 - 70 мм, длина 360 мм. Цилиндр - прочный кусок полой металлической трубы с ровными краями. По краям доски прочно закрепляем две деревянные подушки, размеры которых: ширина 70 мм, длина 150 мм, толщина 10 мм. На подушки кладется цилиндр. Каждый конец закрепляется тремя ограничителями движений цилиндра, з азор между стенками цилиндра и ограничителей не более 2 мм. следовательно, цилиндр не имеет ни одной свободы ли- нейного передвижения. Он имеет только свободу вращения вокруг воображаемой оси. Цилиндр прижимается к подушкам прижимными р оликами. В качестве роликов испол ьзуются шарикоподшипники диаметром 50 мм. Следующая деталь - это нить. Диаметр нити 0,2 - 0,3 мм, длина около 500 метров. Несмотря на свой малый диаметр, нить должна быть очень прочной и выдерживать напряжение на разрыв 10 - 15 кГ. Такие материалы существуют, их надо просто найти. Нить наматывается на середину цилиндра. Угол наклона ни- ти к горизонту составляет 75 градусов. Две вертикальные стойки прочно укрепляются вблизи цилиндра . Наверху стоек вдевается вал, на который насаживается сматывающая катушка . Диаметр катушки 45 мм, На ка тушке закрепляется конец нити так как это показано на схеме. Катушка враща ется в направлении, показанном стрелкой на схеме. Когда сматывающая катушка начинает тянуть нить, цилиндр также начи нает вращаться. При этом возникает трение скольжения цилиндра. Формула силы трения скольжения F=P*k. Часть этой силы трения скольжения идет на создание безреактивной тяги. Чем больше сила F, тем больше безреактивная тяга. Р - это давление прижимных роликов, а k - коэф фициент трения скольжения. Зна чит, сила безреактивной тяги зависит от давления прижимных роликов и от ко эффициента трения скольжения. Чтобы увеличи ть коэффициент трения скольжен ия цилиндра, нужно поместить между цилиндром и подушками наждачную бумагу, тогда коффициент составит k=0,9. В схеме отсутствуют электромотор и редуктор. Электромотор должен быть мощностью не меньше 40 ватт. Редуктор понижает обороты электромотора, чтобы вал со сматывающей катушкой вращался со скоростью 3 - 4 оборота в секунду. Чтобы не потерпеть фиаско, необходимо строго придерживаться схемы и данной инструкции. Например, нить между цилиндром и сматывающей катушкой должна иметь угол наклона к горизонтали в пределах 75 градусов. Уменьшение угла наклона даже на несколько градусов понижает безреактивную тягу, а при угле наклона в 45 градусов тяга вообще исчезает. Кстати, этот фак тор для пытливо го исследователя может послужить ключом открытия механизма безреактивного движения. Как я уже заметил, АГ2 развивает сравнительно небольшую тягу. Поэтому аппарат надо поставить на примитивный пенопластовый плот и спустить на воду. И еще следует обратить внимание на силу нажима роликов. Они должны иметь одинаковое давление. Нера вномерность их давления приведет к рысканью плота или даже круговому движению. Если первый эта п будет успешно завершен, и мо дель покажет устойчивое движение в направле нии стрелки, то мы сразу же пе рейдем ко второму этапу. Если первый этап был успешно закончен и создана вполне работоспособная модель АГ2, тогда логично перейти ко второму этапу. Силовой схеме АГ2.


Я максимал но упростил ее, так чтобы без особого напряжения можно было бы ее воспри- нять. Когда вал начинает раскручивать сматывающую катушку, и нить начинает вращать цилиндр, то возникает трение скольжения цилиндра. Сила трения сколь- жения определяется по формуле F=P*k. При этом на сматывающую катушку дейст- вует сила F". Проекция этой силы на горизонталь в точности равна силе F только вектор ее направлен в противоположную сторону. Значит, сила трения полностью уравновешивается силой реакции. Сила F" вызывает силу F", кото- рая действует на систему и направлена против силы F". Сила натяжения нити F" вызывает силу F""", которая приложена к цилиндру. Векторы F" и F""" обра- зуют параллелограмм сил, равнодействующая которого R. Мы видим, что паралле- лограмм является равносторонним ромбом, а R - диагональ этого ромба. Как из- вестно, диагональ ромба делит прилежащий угол пополам, следовательно, угол В равен 52,5 градуса. Безреактивная тяга Т равна разности проекций на горизон- таль R и F". Т=R*cos B - F"*cos A. Несложный математический расчет дает нам T=0,5*F". Следовательно, безреактивная тяга при угле А равном 75 градусам сос- тавит половину силы натяжения нити. Из формулы безреактивной тяги мы видим, что тяга уменьшается при уменьшении угла А, а при равенстве углов А и В безреактивная тяга исчеза- ет. Действующая модель АГ убедительно подтверждает этот теоретический вывод. Это простое, но абсолютно неопровержимое подтверждение существования безреактивного движения имеет и гораздо более обоснованные объяснения на мо- лекулярном уровне, но это объяснение может быть приложено только к теории АГ3. Я специально упростил схему АГ2 до максимума, чтобы она была вполне понятна. При этом я исходил из следующих двух задач: модель должна зафиксировать и подтвердить возникновение безреактивного движения,а во вторых ясно понять механизм возникновения безреактивного движения.Нить позволяет при вращении сматывающей катушки четыре оборота в секунду сделать это. При этом работа модели продолжается полторы-две минуты. Чем тоньше нить, тем больше работает модель. Вот почему нить должна быть максимально тонкой и одновпеменно очень прочной. При переходе от модели к рабочей ма- шине нить конечно должна быть заменена постоянным приводом. Но постоянный при- вод требует 5-6 дополнительных элементов (деталей); это сразу же осложнило бы схему АГ2. Необходимо иметь в виду, что конструкция постоянного привода требует большой осторожности, потому что малейшая неточность может тут же привести к исчезновению безреактивной тяги. Подробная схема с дополнительными элементами изображена на двух рисунках.

Работа производится за счёт перемещения рабочего тела в гравитационном поле. Можно рассмотреть двигатели, расходующие рабочее тело, и гипотетические гравитационные двигатели без расхода рабочего тела.

Гравитационный двигатель с расходом рабочего тела

Гравитационный двигатель без расхода рабочего тела

По классическим представлениям (закон всемирного тяготения) , гравитационное поле потенциально , из чего непосредственно следует, что работа гравитационного поля вдоль замкнутого контура равна нулю, поэтому такие двигатели невозможны (более того, из-за сил трения КПД будет отрицательным). Несмотря на это, появлялись и до сих пор появляются проекты, связанные с использованием гравитации для выработки энергии без расхода рабочего тела . Встречаются также попытки использовать архимедову силу для выработки энергии, однако архимедова сила является прямым следствием гравитации, поэтому такие двигатели также невозможны. Все такие попытки следует относить к категории «вечный двигатель».

По современным представлениям, гравитация описывается законами общей теории относительности . В этих условиях совершение работы без расхода рабочего тела если и возможно, то не такими способами, как описано в вышеуказанных проектах, и количество вырабатываемой энергии будет малоощутимым в условиях земной гравитации.


Wikimedia Foundation . 2010 .

Смотреть что такое "Гравитационный двигатель" в других словарях:

    Для ускорения объекта (гравитационная праща) Гравитационный манёвр для замедления объекта Гравитационный манёвр разгон, замедление или изменение направления полёта космического а … Википедия

    Маршевый двигатель транспортной системы «Спейс Шаттл» во время огневых испытаний в «Космическом центре и … Википедия

    У этого термина существуют и другие значения, см. Горизонт событий (значения). Горизонт событий Event Horizon … Википедия

    У этого термина существуют и другие значения, см. Горизонт событий (значения). Сквозь горизонт Event Horizon … Википедия

    Вторжение

    Гравитационный манёвр для ускорения объекта Гравитационный манёвр для замедления объекта Гравитационный манёвр разгон, замедление или изменение направления полёта космического аппарата, под действием гравитационных полей небесных тел.… … Википедия

    Гравитационный манёвр для ускорения объекта Гравитационный манёвр для замедления объекта Гравитационный манёвр разгон, замедление или изменение направления полёта космического аппарата, под действием гравитационных полей небесных тел.… … Википедия

Использование: преобразователи гравитационной энергии в механическую и может быть использовано в энергетических установках. Сущность изобретения: одинаковые по массе поршни 26 - 29 под действием силы тяжести давят на противоположные, одинаково отстоящие от центра вращения кривошипы 12 - 15. Давление на кривошипы одинаково и коленчатый вал 11 неподвижен. При подаче жидкости в гидравлический блок одного из поршней 26 - 29 давление последнего на кривошип уменьшается в 6 - 7 раз, вследствие чего возникает разность сил, приложенных к этим двум кривошипам, и коленчатый вал 11 начинает вращаться, периодически подавая жидкость в гидроблоки тех поршней, которые движутся вверх и сливая ее из них, в соответствии с порядком работы четырехпоршневого двигателя распределительный механизм обеспечивает постоянную разность сил давления на противоположных кривошипах и тем самым вращение коленчатого вала, маховик 16 аккумулирует энергию вращения коленчатого вала 11 и выводит поршни из верхних и нижних мертвых точек. 3 з.п.ф-лы, 53 ил.

Изобретение относится к машиностроению и может найти применение в качестве силовой установки на железнодорожном транспорте и в энергетическом строительстве. Известен карбюраторный четырехтактный двигатель внутреннего сгорания автомобиля ВАЗ - 2121, который содержит блок цилиндров с поршнями и картером, внутри которого установлен кривошипно-шатунный механизм, газораспределительный механизм, механизм запуска, системы смазки, охлаждения, зажигания и питания . Недостатками известного карбюраторного двигателя являются большие тепловые потери, загрязнение окружающей среды выхлопными газами, большой расход топлива, высокая стоимость. Указанные недостатки обусловлены конструкцией двигателя. Известен также гравитационный двигатель, содержащий преобразователь энергии, пусковое устройство, систему электрооборудования и узел отбора мощности . Недостатками известного гравитационного двигателя, принятого за прототип, являются низкий КПД и недостаточная мощность. Указанные недостатки обусловлены конструкцией двигателя. Целью изобретения является повышение эксплуатационных качеств двигателя. Достигается это тем, что преобразователь энергии и узел отбора мощности заменены преобразователем энергии в виде грузов-поршней, установленных в вертикальных направляющих и кинематически связанных через шатуны с коленчатым валом в форме нескольких кривошипов, расположенных один относительно другого внутри пары под углом 180 о, а между парами - под углом 90 о, и снабжен гидроприводным устройством, выполненными из гидроблоков, размещенных между шатунами и поршнями и гидрораспределительного механизма с насосом, приводным от электродвигателя, причем внутренние полости гидроблоков трубопроводами соединены с гидросистемой гидрораспределительного механизма; дополнительным узлом отбора мощности, выполненным в виде генератора электрического тока, кинематически связанного с коленчатым валом через повышающий редуктор. На фиг. 1 изображен общий вид гравитационного двигателя; на фиг.2 - то же, вид сверху; на фиг.3 - то же, вид спереди; на фиг.4 - то же, вид сзади; на фиг.5 - вид со стороны гидрораспределительного механизма; на фиг.6 - вид в разрезе на кривошипно-шатунный механизм; на фиг.7 - вид спереди в разрезе; на фиг.8 - общий вид поршня; на фиг.9 - то же, вид сверху с частичным разрезом; на фиг.10 - то же, вид сбоку; на фиг.11 - вид на коленчатый вал и привод вала гидрораспределительного механизма; на фиг.12 - схема гидрораспределительного механизма; на фиг.13 - 20 - расположение кулачков на валу гидрораспределительного механизма; на фиг.21 - общий вид клапанной коробки; на фиг.22 - то же, вид сбоку; на фиг.23 - то же, вид в разрезе; на фиг.24 - гидравлическая схема гидрораспределительного механизма; на фиг.25 - 32 - схема принципа действия гравитационного двигателя; на фиг.33 - устройство повышающего редуктора; на фиг.34 - диаграмма работы двигателя; на фиг.35 - общий вид гидроблока; на фиг.36 - разрез по А-А на фиг.35; на фиг. 37 - то же, вид сверху; на фиг.38 - то же, вид сбоку; на фиг.39 - то же, вид в разрезе; на фиг.40 - схема соединения стреловидной балки с поршнем гидроблока; на фиг.41 - общий вид внутреннего поршня гидроблока; на фиг.42 - то же, вид сверху; на фиг.43 - общий вид наружного поршня гидроблока; на фиг.44 - то же, вид сверху; на фиг.45 - схема сил, действующих на внутреннюю поверхность гидроблока; на фиг. 46 - схема сил, действующих на внутренние и наружные поршни гидроблока; на фиг.47 - схема электрооборудования двигателя; на фиг. 48 - схема регулятора оборотов двигателя; на фиг.49 - схема смазки двигателя; на фиг.50 - 53 - положения коленчатого вала и схема запуска двигателя. Предлагаемый трехтактный четырехпоршневой гравитационный двигатель включает преобразователь энергии в форме кривошипно-шатунно-поршневого механизма с гидрораспределительным механизмом и регулятором, узел отбора мощности на генератор электрического тока кинематически соединенного с коленчатым валом через повышающий редуктор, пусковое устройство и системы электрооборудования и смазки. Гравитационный двигатель содержит раму 1, на которой установлен картер 2. К картеру болтами прикреплен блок 3 двигателя, на котором расположены направляющие 4 и 5. В картере двигателя на коренных подшипниках 6, 7, 8, 9, 10 установлен коленчатый вал 11, имеющий две пары кривошипов 12, 13 и 14, 15, причем в каждой паре один кривошип установлен относительно другого под углом 180 о, а между парами под углом 90 о. На переднем конце коленчатого вала закреплен маховик 16, который должен быть достаточно тяжелым, а на заднем конце установлен фланец 17, который соединен болтами с фланцем 18 повышающего редуктора 19 через резиновый диск 20. Редуктор механически соединен с электрогенератором 21. Кривошипы коленчатого вала соединены с разъемными головками шатунов 22, 23, 24, 25, а неразъемные головки - с поршнями-грузиками 26, 27, 28, 29, которые установлены в направляющих на шарикоподшипниках 30. Между поршнями и шатунами, в тех же направляющих на шарикоподшипниках размещены гидроблоки 31, 32, 33, 34, шарнирно соединенные с теми и другими. Все поршни имеют одинаковое устройство и каждый из них содержит пустотелый корпус 35, закрытый сверху крышкой 36. Внутрь корпуса для увеличения массы поршня вставлена свинцовая вставка 37. Сбоку корпус имеет по два отверстия, в которые вставлены стаканы 38, имеющие сферические выемки для шариков. Стаканы взаимодействуют с регулировочными конусами 39, оканчивающимися винтами 40, ввернутыми в корпус и закрепленными гайками 41. Вворачивая или выворачивая конуса, можно регулировать ход поршня в направляющих. К нижней части корпуса поршня болтами прикреплен сферический разъем, состоящий из двух частей 42 и 43. На средней части корпуса поршня расположена метка 44, а на одной из направляющих нанесены метки 45, верхняя из которых соответствует "верхней мертвой точке", нижняя - "нижней мертвой точке" и средняя обозначает промежуточное положение поршня. В блоке двигателя установлен на подшипниках распределительный вал гидрораспределительного механизма, который приводит в движение ведомая шестерня 46, входящая в зацепление с промежуточной шестерней 47, которая входит в зацепление с ведущей шестерней 48, закрепленной на коленчатом валу. Передаточное отношение от коленчатого вала к распределительному валу 1:1. Гидрораспределительный механизм содержит распределительный вал, состоящий из внутреннего вала 49, на который надет наружный трубчатый вал 50, удерживаемый с обеих сторон стопорными кольцами 51 и 52. Трубчатый вал отлит заодно с кольцами 53, на которых выполнены кулачки 54 - 61. На заднем конце трубчатого вала выполнен наклонный паз 62, в который вставлен палец 63, соединенный с колесом 64, имеющим желоб и установленным на шлицах внутреннего вала. В желоб колеса снизу входит рычаг 65, соединенный с регулятором частоты вращения электродвигателя 66, который приводит в движение насосный узел 67 гидрораспределительного механизма. В желоб колеса сверху входит рычаг 68, соединенный с Т-образной втулкой 69, к которой прижат один конец пружины 70, а другой вставлен внутрь чашеобразной втулки 71. В наклонные пазы Т-образной втулки вставлены шарики 72, контактирующие с диском 73, закрепленным на внутреннем валу. Чашеобразная втулка взаимодействует с рычагом 74, свободный конец которого контактирует с регулировочным винтом рычага 75, ролик которого прижат эксцентриком 76, установленным на оси и имеющим ручку 77. Кулачки распределительного вала взаимодействуют с толкателями 78, нагруженными пружинами 79. Верхние концы толкателей контактируют с клапанами клапанных коробок 80, 81, 82, 83. Все четыре клапанные коробки одинаковы по конструкции и каждая из них содержит корпус 84 с крышкой 85, привернутой болтами 86, которые образуют внутреннюю полость 87, которая соединена через впускной 88 и выпускной 89 клапаны каналами с впускным 90 и выпускным 91 штуцерами. Клапаны нагружены пружинами 92. На крышке установлены рабочий штуцер 93 и штуцер запуска 94, которые соединены с внутренней полостью клапанной коробки, имеющей отверстия 95 для крепления ее к блоку двигателя. Гидравлическая система распределительного механизма включает еще масляный бак 96, имеющий подогреватель масла 97, кран 98 остановки двигателя, краны 99, 100, 101, 102 запуска двигателя. В насосном узле гидрораспределительного механизма размещены нагнетательный насос 103 с редукционным клапаном 104 и сливной насос 105. Все впускные штуцера и штуцера запуска двигателя подключены к нагнетательной магистрали 106, а все выпускные штуцера - к сливной магистрали 107. Гидравлические блоки, установленные между поршнями и шатунами, имеют одинаковое устройство. Гидроблок содержит корпус прямоугольного сечения 108 с фланцем 109 в нижней части, к которому болтами привернута крышка 110 с шарниром 11, к которому присоединен шатун двигателя. В верхней части цилиндрическая часть корпуса разветвляется на две пары цилиндров такого же сечения: наружную 112, 113 и внутреннюю 114, 115. Угол между осями цилиндров = 55 о. Внутрь цилиндров вставлены наружные поршни 116, 117 и внутренние поршни 118, 119 с уплотнительными элементами 120. Каждый поршень имеет ограничительный паз 121, внутрь которого вставлен палец 122, закрепленный в корпусе цилиндра. В нижней торцовой части, обращенной в сторону жидкости, каждый поршень имеет специальные скосы. У наружных поршней они выполнены под углом = 55 о, а у внутренних поршней - под углом = 39 о. В верхней части поршни имеют Т-образные пазы 123, через которые пропущена стреловидная балка 124, оканчивающаяся в верхней части шаром 125, входящим в сферический разъем поршня. В верхней части сбоку каждый гидроблок имеет штуцер 126, посредством которого внутренняя полость гидроблока соединена гибким шлангом 127 с рабочим штуцером соответствующей клапанной коробки гидрораспределительного механизма. Вместе с корпусом гидроблока отлиты два прямоугольных бруса 128 и 129 с отверстиями для шариков и механизмами регулировки их, как в поршне. Гидравлические блоки вставлены в те же, что и поршни, направляющие и могут перемещаться вместе с поршнями, как одно целое. Повышающий редуктор содержит корпус 130, в котором на подшипниках 131 и 132 установлены ведущий 133 и выходной 134 валы, причем выходной вал своим торцом входит в торец ведущего вала. Верхний промежуточный вал 135 установлен в подшипниках 136 и 137. Нижний промежуточный вал установлен в подшипниках 138 и 139 и имеет две шестерни 140 и 141, входящих в зацепление с большой шестерней каретки 142, установленной свободно на ведущем валу и малой шестерней каретки 143, установленной на ведущем валу свободно. Шестерня 144 ведущего вала входит в зацепление с шестерней 145 верхнего промежуточного вала, а шестерня 146 входит в зацепление с шестерней 147 выходного вала. Шестерни 148 и 149 верхнего промежуточного вала входят в зацепление соответственно с малой и большой шестернями кареток ведущего вала. Корпус закрыт крышкой 150. На выходном валу закреплен фланец 151, к которому болтами привернут фланец 152 генератора. Между фланцами зажат резиновый диск 153. Генератор постоянного тока через реле обратного тока 154 подключен к аккумуляторным батареям 155, которые объединены в несколько групп. В каждой группе соединение батарей последовательное, а между группами - параллельное. Аккумуляторные батареи размещены в нишах рамы двигателя. Все приборы электрооборудования размещены на щитке 156, который привернут к раме. В систему электрооборудования входят реле-регулятор 157, включатели, вольтметры и амперметры, предохранители 158, лампы освещения двигателя, электродвигатель 159 привода насосного узла гидрораспределительного механизма, электродвигатель 160 привода масляного насоса системы смазки, электродвигатель 161 привода вентилятора охлаждения масляного радиатора, сигнальные лампы 162 температуры и давления масла, датчики температуры и давления масла 163, соединенные с указателями давления и температуры масла 164, электрический тахометр 165 с датчиком 166, пускатели электродвигателей и другие приборы. В систему смазки двигателя входят масляный бак 167, установленный на раме двигателя, масляный насос 168 с ограничительным клапаном, фильтр 169 очистки масла, масляный радиатор 170 с краном 171 и вентилятором обдува 172. Как во всех двигателях, так и в предлагаемом смазка подшипников коленчатого вала и разъемных головок шатунов под давлением по сверлениям внутри коленчатого вала. Смазка всех шестерен - разбрызгиванием, через специально подведенные к ним каналы. Смазка толкателей, направляющих - самотеком из специальных углублений, куда оно подается насосом. Масло, прошедшее через трущиеся части, стекает в картер двигателя, а из него в масляный бак. Работа гравитационного двигателя основана на следующем принципе. Два одинаковых по массе поршня под действием силы тяжести производят давление на два противолежащих, одинаково отстоящих от центра вращения кривошипа. Давление на оба кривошипа одинаково и коленчатый вал неподвижен. При подаче жидкости в гидроблок одного из поршней давление последнего на кривошип уменьшается в несколько раз, вследствие чего возникает разность сил, приложенная к этим кривошипам, и коленчатый вал начинает вращаться. Периодически, подавая жидкость в гидроблоки тех поршней, которые движутся вверх и, сливая ее из них, в соответствии с порядком работы четырехпоршневого двигателя, гидрораспределительный механизм обеспечивает вращение коленчатого вала. При этом каждый поршень за один оборот коленчатого вала совершает один рабочий ход и два подготовительных хода. При рабочем ходе жидкость не подается в гидроблок и поршень оказывает на кривошип максимальное давление, поворачивая коленчатый вал на 180 о, поршень движется от верхней мертвой точки (ВМТ) к нижней мертвой точке (НМТ). Первый подготовительный ход - подача жидкости в гидроблок, поршень движется вверх от НМТ до точки, соответствующей 270 о, оказывая на кривошип минимальное давление. Второй подготовительный ход - слив жидкости из гидроблока, поршень движется вверх от точки, соответствующей 270 о, до ВМТ, оказывая на кривошип также минимальное давление. Первый и второй подготовительные хода по времени равны. На фигурах 25 - 34 рабочий ход показан штриховкой; первый подготовительный ход - закрашено черным; второй подготовительный ход - заштриховано клетками. На фиг.25 и 26 показаны исходные положения поршней 28 и 29 (3- и 4-й поршни от маховика). Кривошип 14 поршня 28 немного отошел от положения НМТ (более 180 о), а кривошип 15 поршня 29 от положения НМТ (более 180 о), а кривошип 15 поршня 29 от положения ВМТ (более 0 о). Поршни 28 и 29 через шаровые опоры 42 и 43 давят на шары 125 и стреловидные балки 124, а последние производят давление на наружные 116 и 117 и внутренние 118 и 119 поршни, которые занимают крайние нижние положения и упираются в пальцы 122. Далее через корпуса гидроблоков 108, шатуны 24, 25 давление передается на кривошипы 14, 15 коленчатого вала 11. Давление на кривошипы одинаково, плечи приложения сил равны и силы F и F 1 равны. Кулачок 58 нажимает на толкатель 78, сжимая пружину 79, который открывает впускной клапан 88 клапанной коробки 82 и жидкость от насоса 103 через напорную магистраль 106, впускной штуцер 90 клапанной коробки, внутреннюю полость 87, рабочий штуцер 93 и гибкий шланг 127 поступает внутрь гидроблока 33 поршня 28. Наружные 116, 117 и внутренние 118, 119 поршни гидроблока 33 начинают подниматься и через стреловидную балку 124, шар 125 медленно поднимают на расстояние 3 - 5 см вверх поршень 28. Так как площадь сечения крышки 110 гидроблока в несколько раз меньше. Сила F будет меньше силы F 1 и коленчатый вал станет поворачиваться по стрелке. Впускной 88 и выпускной 89 клапаны клапанной коробки 83 поршня 29 при этом закрыты. Повернувшись, коленчатый вал займет положение, показанное на фиг.27 и 28. В этом случае кулачок 58 отойдет от толкателя 78 и закроется впускной клапан 88 клапанной коробки 82, а выпускной клапан 59 откроется и жидкость станет сливаться из гидроблока поршня 28, который одновременно с движением вверх станет медленно опускаться вниз вместе с поршнями 116 - 119 гидроблока. Клапаны 88 и 89 клапанной коробки 83 поршня 29 закрыты. Давление поршней 28 и 29 на кривошипы не изменилось и коленчатый вал поворачивается еще на угол так, как сила F все еще меньше силы F 1 . Как только поршень 28 достигнет верхней мертвой точки (ВМТ) поршни 116 - 119 гидроблока опустятся на пальцы 122 и давление поршня 28 на кривошип 14 коленчатого вала увеличится до нормы. Маховик 16, вращаясь по инерции, выведет поршни из мертвых точек. Далее поршень 28 будет совершать рабочий ход. В то же время в гидроблок 34 поршня 29, достигшего нижней мертвой точки (НМТ), станет поступать жидкость и поршни 116, 117, 118, 119 гидроблока 34 будут подниматься вверх, поднимая дополнительно поршень 29 на небольшую дополнительную высоту, уменьшая давление на кривошип 15 коленчатого вала 11. При этом кулачек 60 нажмет на толкатель 78, который откроет впускной клапан 88 клапанной коробки 83. Сила F станет больше силы F 1 и коленчатый вал 11 будет продолжать вращаться в ту же сторону (фиг. 29 и 30). Достигнув положения, показанного на фиг.32, поршень 29 будет продолжать двигаться вверх. При этом впускной клапан 88 закроется, кулачок 60 опустит толкатель, а кулачок 61 через толкатель 78 откроет выпускной клапан 89 клапанной коробки 83 и жидкость из гидроблока станет сливаться через гибкий шланг 127, клапанную коробку 83, сливную магистраль 107, насос 105 в масляный бак 96. Жидкость из гидроблока будет сливаться до тех пор, пока поршень не достигнет ВМТ. Поршень 28 будет совершать рабочий ход. Затем поршни займут положение, показанное на фиг.25 и 26 и все повториться снова. Таким образом, периодически подавая жидкость в те гидроблоки, поршни которых движутся от НМТ до точки, соответствующей 270 о и, сливая ее, из тех гидроблоков, поршни которых движутся от точки, соответствующей 270 о, до ВМТ гидрораспределительный механизм обеспечивает разность сил, прикладываемых к кривошипам коленчатого вала. Таким же образом работают и поршни 26 и 27. Все поршни, движущиеся от ВМТ до НМТ, совершают рабочий ход и давлением на соответствующие кривошипы приводят в движение коленчатый вал 11 двигателя. В таблице 1 показан порядок чередования рабочих ходов гравитационного двигателя. Из данных табл. 1 видно, что рабочий ход в четырехпоршневом двигателе совершают одновременно два поршня. Поршни в верхнем ряду начинают рабочий ход, двигаясь от ВМТ, а в нижнем ряду продолжают рабочий ход, двигаясь от средней точки до НМТ (счет поршней от маховика). В табл.2 показан порядок чередования подготовительных ходов. В верхнем ряду номера поршней, начинающих подготовительный ход, а в нижнем ряду - продолжающих подготовительный ход. При подаче жидкости в гидроблоки она действует не только на поршни, но и на внутренние части корпуса. Скосы поршней 116 - 119 делят внутреннюю поверхность цилиндров гидроблока на равные участки: l = l 1 ; l 2 = l 3 ; l 4 = l 5 ; l 6 = l 7 ; l 8 = l 9 ; l 10 = l 11 . Силы жидкости, действующие на эти участки равны и взаимно уравновешивают друг друга: F = F 1 ; F 2 = F 3 ; F 4 = F 5 ; F 6 = F 7 ; F 8 = F 9 ; F 10 = =F 11 (фиг. 45). На фиг.46 показаны силы, действующие на крышку гидроблока и поршни. Откуда видно, что силы, действующие на внутренние поршни F в и F в1 , направлены под углом 55 о друг к другу. Равнодействующая этих сил F р направлена вверх. Силы, действующие на наружные поршни F н и F н1 , направлены также под углом 55 о друг к другу и имеют равнодействующую силу F р1 . Сложение равнодействующих сил F p и F р1 дает силу F пор, которая действует на стреловидную балку 124 и поднимает поршень двигателя дополнительно на небольшую высоту с небольшой скоростью. Сила F кр, действующая на крышку 110 гидроблока и соответственно на кривошип коленчатого вала, в несколько раз меньше силы F пор, так как площадь сечения крышки 110 в несколько раз меньше площади сечения поршней гидроблока. В холодное время года жидкость, подаваемая в гидроблоки, может подогреваться в масляном баке 96 посредством подогревателя 97. Ввиду значительного веса поршней 26 - 29 гравитационный двигатель является малооборотным. Поэтому для нормальной работы генератора постоянного тока 21 использован повышающий редуктор 19, который увеличивает частоту вращения вала генератора до необходимых пределов. Электроэнергия, вырабатываемая генератором, через реле обратного тока 154 идет на подзарядку аккумуляторных батарей 155 и питания приборов электрооборудования. Постоянство тока и напряжения поддерживается реле-регулятором 157. При работе двигателя заданные обороты устанавливаются ручкой 77 и поддеpживаются следующим образом. Поворот ручки 77 в ту или иную сторону воздействует на Т-образную втулку 69, изменяя силу сжатия пружины 70 регулятора. При возрастании частоты вращения вала двигателя сверх установленной нормы шарики 72 под действием центробежной силы расходятся от центра вращения и перемещают втулку 69 с рычагом 68, который передвигает колесо с желобом 64 по шлицам внутреннего вала 49 гидрораспределительного механизма. Палец 63, пере- двигаясь вдоль наклонной прорези 62 наружного вала 59, повернет последний на дополнительный угол Z = 30 о по ходу вращения и вместе с ним на тот же угол повернутся диски 53 с кулачками 54 - 61. В результате чего изменится диаграмма рабочих и подготовительных ходов у всех четырех поршней двигателя (на фиг. 34 показано пунктиром). Смещается начало и конец действия рабочего хода, а также начало и конец наполнения и слива жидкости в гидроблоках 31 - 34. Это приведет к уменьшению сил, действующих на кривошипы коленчатого вала, и соответственно уменьшению частоты вращения вала двигателя. При уменьшении частоты вращения коленчатого вала все произойдет в обратном порядке. Наружный вал повернется против вращения и восстановятся моменты начала и конца рабочих и подготовительных ходов и частота вращения коленчатого вала увеличится. Во время работы двигателя масло для смазки подшипников, шестерен, валов, толкателей может либо подогреваться подогревателем 97 в масляном баке 167, либо охлаждаться в радиаторе 170 посредством вентилятора 172, вращаемого электродвигателем 161, в зависимости от температуры окружающей среды. Все необходимые сведения о работе двигателя выводятся на щиток управления 156 и контролируются приборами. Для остановки двигателя необходимо закрыть кран 98, через который подается жидкость в напорную магистраль 106. При этом насос 103 будет работать в холостом режиме, перегоняя жидкость через редукционный клапан 104, а насос 105 произведет слив жидкости из всех гидроблоков. Поршни всех гидроблоков опустятся на пальцы 122 и давление поршней 26 - 29 на кривошипы коленчатого вала 11 станет одинаково и он остановится. После остановки вала двигателя необходимо выключить электродвигатели 66 и 160 насосного узла 67 и насоса 168 системы смазки и отключить электрооборудование. Запуск двигателя производится следующим образом. Во время остановки двигателя коленчатый вал может находиться в одном из положений, показанных на фиг. 50 - 53, либо с небольшими отклонениями в ту или иную сторону от указанных положений. По меткам 44 на поршнях и по меткам 45 на направляющих необходимо определить, в каком из указанных выше положений находится коленчатый вал, какие поршни должны будут совершать подготовительные хода. В соответствии с данными табл.2 необходимо открыть на некоторое время и закрыть один или два из кранов запуска 99 - 102, предварительно включив электродвигатели 66 и 160 насосного узла 67 и насоса 168 системы смазки. При этом жидкость от насоса 103 через открытый кран 98, напорную магистраль 106, соответствующие краны запуска, штуцеры 94, внутренние положение полости 87, рабочие штуцеры 93 и гибкие шланги 127 поступит в гидроблоки соответствующих поршней двигателя и коленчатый вал начнет поворачиваться, после чего вступит в действие гидрораспределительный механизм и будет поддерживаться вращение коленчатого вала, как было описано выше (на фиг.50 - 53 направление движения поршней, совершающих подготовительный ход, показано стрелками). Двигатель должен быть установлен таким образом, чтобы поршни его находились строго в вертикальной плоскости. Двигатель может быть использован на локомотивах, передвижных электростанциях, в районах, где затруднена доставка топлива.

ФОРМУЛА ИЗОБРЕТЕНИЯ

1. ГРАВИТАЦИОННЫЙ ДВИГАТЕЛЬ, содержащий преобразователь энергии, пусковое устройство, систему электрооборудования и узел отбора мощности, отличающийся тем, что рабочий орган преобразователя энергии выполнен в виде грузов - поршней, установленных на шарикоподшипниках в вертикальных направляющих и кинематически связанных через шатуны с коленчатым валом, выполненным в виде нескольких пар кривошипов, расположенных один относительно другого внутри пары под углом 180 o , а между парами - под углом 90 o и снабжен гидроприводным устройством, выполненным из гидроблоков и гидрораспределительного механизма с насосом, гидравлически соединенных между собой и рабочей полостью цилиндра. 2. Двигатель по п.1, отличающийся тем, что каждый гидравлический блок выполнен в виде емкости с входными и выходными штуцерами, подключенными к внутренним полостям клапанных коробок гидрораспределительного механизма, размещен между поршнем и шатуном и соединен с ними шарнирно. 3. Двигатель по пп.1 и 2, отличающийся тем, что снабжен дополнительным узлом отбора мощности, выполненным в виде генератора электрической энергии, кинематически связанным с коленчатым валом через повышающий редуктор. 4. Двигатель по пп.1 - 3, отличающийся тем, что насос гидрораспределительного механизма механически соединен с электродвигателем системы электрооборудования.
Понравилась статья? Поделитесь с друзьями!
Была ли эта статья полезной?
Да
Нет
Спасибо, за Ваш отзыв!
Что-то пошло не так и Ваш голос не был учтен.
Спасибо. Ваше сообщение отправлено
Нашли в тексте ошибку?
Выделите её, нажмите Ctrl + Enter и мы всё исправим!