Автомобильный портал - Retrovaz

Конструируем звуки. Генератор звуковых частот схема Генератор звуковой частоты своими руками схема

Бытовая техника

Схема звукового генератора на транзисторах

Генератор звуковых волн – это устройство или узел электрической цепи, отвечающий за создание и воспроизведение звуковых колебаний.

Где может пригодиться такое устройство:

1.Простой электрический дверной звонок (при замыкании контактов вынесенной удаленно кнопки происходит оповещение звуком о посетителях);

2.Сигнализации (при срабатывании системы безопасности включается блок звукового оповещения);

3.Формирование определенного тембра звука в звуковой аппаратуре;

4.Отпугивание насекомых/птиц (при излучении звуковых колебаний в определенных частотах);

5.В другой профессиональной технике (проверка низкочастотных цепей, тестирование деталей на дефекты и другие цели, основывающиеся на свойствах звуковых волн).

Простейший генератор звука на транзисторах

Ниже предложена схема с минимальным количеством радиодеталей. Она может пригодиться начинающим радиолюбителям, в радиокружках, в тестовых стендах, для дверного звонка и т.п.

В обиходе ее еще называют "пищалкой".

VT1 – биполярный транзистор n-p-n типа, например, КТ315. Подойдет любой, даже маломощный.

VT2 – биполярный, но p-n-p n типа, например, КТ361. Тоже подойдет любой.

Колебания задаются конденсатором, его емкость должна быть в диапазоне 10-100 нФ.
Резистор – подстроечный, подойдет с номиналом в диапазоне 100-200 кОм.

Динамик BA1 должен быть маломощным, его параметры должны быть сопоставимы с параметрами питающего элемента. В данной схеме может использоваться любой подручный – из игрушек или наушников.

При правильном расположении элементов печатная плата не понадобится.

Доработка до "игровой панели"

По указанной схеме можно собрать целую панель, способную генерировать звуковые колебания различных частот:

1.Так как за генерацию частоты отвечает емкость конденсатора, то количество выводов можно сделать по количеству имеющихся в наличии разных емкостей (желательно с большим шагом, чтобы изменение частоты было сразу заметно уху.

2.Один вывод конденсаторов будет общим у всех, и соединен, например, с базой VT1 или контактом динамика.

3.Вторые выводы соединяются с выводами одиночных гальванических контактов на панели.

4.Теперь для получения звука достаточно включить в цепь новый конденсатор лишь соединив любой из выведенных контактов со второй общей точкой в схеме (если первый общий вывод подключался к базе VT1, то второй – эмиттеру VT2/контакту динамика, или наоборот).

5.При желании выключатель можно исключить из схемы.

В качестве примера.

Еще одна простая реализация на схеме ниже.

Более сложная схема

Если вам нужна возможность регулировки звуковых частот в заданном диапазоне, то возможно, вам пригодится схема ниже.

Генераторы низкой частоты (ГНЧ) используют для получения незатухающих периодических колебаний электрического тока в диапазоне частот от долей Гц до десятков кГц. Такие генераторы, как правило, представляют собой усилители, охваченные положительной обратной связью (рис. 11.7,11.8) через фазосдви-гающие цепочки. Для осуществления этой связи и для возбуждения генератора необходимы следующие условия: сигнал с выхода усилителя должен поступать на вход со сдвигом по фазе 360 градусов (или кратном ему, т.е. О, 720, 1080 и т.д. градусов), а сам усилитель должен иметь некоторый запас коэффициента усиления, KycMIN. Поскольку условие оптимального сдвига фаз для возникновения генерации может выполняться только на одной частоте, именно на этой частоте и возбуждается усилитель с положительной обратной связью.

Для сдвига сигнала по фазе используют RC- и LC-цепи, кроме того, сам усилитель вносит в сигнал фазовый сдвиг. Для получения положительной обратной связи в генераторах (рис. 11.1, 11.7, 11.9) использован двойной Т-образный RC-мост; в генераторах (рис. 11.2, 11.8, 11.10) — мост Вина; в генераторах (рис. 11.3 — 11.6, 11.11 — 11.15) — фазосдвигающие RC-це-почки. В генераторах с RC-цепочками число звеньев может быть достаточно большим. На практике же для упрощения схемы число не превышает двух, трех.

Расчетные формулы и соотношения для определения основных характеристик RC-генераторов сигналов синусоидальной формы приведены в таблице 11.1. Для простоты расчета и упрощения подбора деталей использованы элементы с одинаковыми номиналами. Для вычисления частоты генерации (в Гц) в формулы подставляют значения сопротивлений, выраженные в Омах, емкостей — в Фарадах. Для примера, определим частоту генерации RC-генератора с использованием трехзвенной RC-це-пи положительной обратной связи (рис. 11.5). При R=8,2 кОм; С=5100 пФ (5,1х1СГ9 Ф) рабочая частота генератора будет равна 9326 Гц.

Таблица 11.1

Для того чтобы соотношение резистивно-емкостных элементов генераторов соответствовало расчетным значениям, крайне желательно, чтобы входные и выходные цепи усилителя, охваченного петлей положительной обратной связи, не шунтировали эти элементы, не влияли на их величину. В этой связи для построения генераторных схем целесообразно использовать каскады усиления, имеющие высокое входное и низкое выходное сопротивления.

На рис. 11.7, 11.9 приведены «теоретическая» и несложная практическая схемы генераторов с использованием двойного Т-моста в цепи положительной обратной связи.

Генераторы с мостом Вина показаны на рис. 11.8, 11.10 [Р 1/88-34]. В качестве УНЧ использован двухкаскадный усилитель. Амплитуду выходного сигнала можно регулировать потенциометром R6. Если требуется создать генератор с мостом Вина, перестраиваемый по частоте, последовательно с резисторами R1, R2 (рис. 11.2, 11.8) включают сдвоенный потенциометр. Частотой такого генератора можно также управлять, заменив конденсаторы С1 и С2 (рис. 11.2, 11.8) на сдвоенный конденсатор переменной емкости. Поскольку максимальная емкость такого конденсатора редко превышает 500 пФ, удается перестраивать частоту генерации только в области достаточно высоких частот (десятки, сотни кГц). Стабильность частоты генерации в этом диапазоне невысока.

На практике для изменения частоты генерации подобных устройств часто используют переключаемые наборы конденсаторов или резисторов, а во входных цепях применяют полевые транзисторы. Во всех приводимых схемах отсутствуют элементы стабилизации выходного напряжения (для упрощения), хотя для генераторов, работающих на одной частоте или в узком диапазоне ее перестройки, их использование не обязательно.

Схемы генераторов синусоидальных сигналов с использованием трехзвенных фазосдвигающих RC-цепочек (рис. 11.3)

показаны на рис. 11.11, 11.12. Генератор (рис. 11.11) работает на частоте 400 Гц [Р 4/80-43]. Каждый из элементов трехзвен-ной фазосдвигающей RC-цепочки вносит фазовый сдвиг на 60 градусов, при четырехзвенной — 45 градусов. Однокаскадный усилитель (рис. 11.12), выполненный по схеме с общим эмиттером, вносит необходимый для возникновения генерации фазовый сдвиг на 180 градусов. Заметим, что генератор по схеме на рис. 11.12 работоспособен при использовании транзистора с высоким коэффициентом передачи по току (обычно свыше 45...60). При значительном снижении напряжения питания и неоптимальном выборе элементов для задания режима транзистора по постоянному току генерация сорвется.

Звуковые генераторы (рис. 11.13 — 11.15) близки по построению к генераторам с фазосдвигающими RC-цепочками [Рл 10/96-27]. Однако за счет использования индуктивности (телефонный капсюль ТК-67 или ТМ-2В) вместо одного из ре-зистивных элементов фазосдвигающей цепочки, они работают с меньшим числом элементов и в большем диапазоне изменения напряжения питания.

Так, звуковой генератор (рис. 11.13) работоспособен при изменении напряжения питания в пределах 1...15 В (потребляемый ток 2...60 мА). При этом частота генерации изменяется от 1 кГц (ипит=1,5 В) до 1,3 кГц при 15 В.

Звуковой индикатор с внешним управлением (рис. 11.14) также работает при 1)пит=1...15 В; включение/выключение генератора производится подачей на его вход логических уровней единицы/нуля, которые также должны быть в пределах 1...15 В.

Звуковой генератор может быть выполнен и по другой схеме (рис. 11.15). Частота его генерации меняется от 740 Гц (ток потребления 1,2 мА, напряжение питания 1,5 В) до 3,3 кГц (6,2 мА и 15 В). Более стабильна частота генерации при изменении напряжения питания в пределах 3...11 В — она составляет 1,7 кГц± 1%. Фактически этот генератор выполнен уже не на RC-, а на LC-эле-ментах, причем, в качестве индуктивности используется обмотка телефонного капсюля.

Низкочастотный генератор синусоидальных колебаний (рис. 11.16) собран по характерной для LC-генераторов схеме «емкостной трехточки». Отличие заключается в том, что в качестве индуктивности использована катушка телефонного капсюля, а резонансная частота находится в диапазоне звуковых колебаний за счет подбора емкостных элементов схемы.

Другой низкочастотный LC-генератор, выполненный по каскодной схеме, показан на рис. 11.17 [Р 1/88-51]. В качестве индуктивности можно воспользоваться универсальной или стирающей головками от магнитофонов, обмотками дросселей или трансформаторов.

RC-генератор (рис. 11.18) реализован на полевых транзисторах [Рл 10/96-27]. Подобная схема используется обычно при построении высокостабильных LC-генераторов. Генерация возникает уже при напряжении питания, превышающем 1 В. При изменении напряжения с 2 до 10 6 частота генерации понижается с 1,1 кГц до 660 Гц, а потребляемый ток увеличивается, соответственно, с 4 до 11 мА. Импульсы частотой от единиц Гц до 70 кГц и выше могут быть получены изменением емкости конденсатора С1 (от 150 пФ до 10 мкФ) и сопротивления резистора R2.

Представленные выше звуковые генераторы могут быть использованы в качестве экономичных индикаторов состояния (включено/выключено) узлов и блоков радиоэлектронной аппаратуры, в частности, светоизлучающих диодов, для замены или дублирования световой индикации, для аварийной и тревожной индикации и т.д.

Литература: Шустов М.А. Практическая схемотехника (Книга 1), 2003 год


Генератор звуковых частот описание работы схемы


Генератор звуковых частот схема на транзисторах

Два транзистора - полевой VT1 и биполярный VT2 - включены по схеме составного повторителя, имеющего небольшой коэффициент усиления и повторяющего на выходе фазу входного сигнала. Глубокая отрицательная обратная связь (ООС) через резисторы R7, R8 стабилизирует и усиление, и режим транзисторов.

Но для возникновения генерации нужна еще положительная обратная связь с выхода усилителя на его вход. Она осуществляется через так называемый мост Вина - цепочку из резисторов и конденсаторов R1...R4, С1...С6. Мост Вина ослабляет как низкие (из-за возрастающего емкостного сопротивления конденсаторов С4...С6), так и высокие (из-за шунтирующего действия конденсаторов С1...СЗ). На центральной же часто-те настройки, примерно равной 1/271RC, его коэффициент передачи максимален, а фазовый сдвиг равен нулю. На этой часто-те и возникает генерация.

Изменяя сопротивления резисторов и емкость конденсаторов моста, часто-ту генерации удается изменять в широких пределах. Для удобства пользования выбран десятикратный диапазон изменения частоты сдвоенным переменным резистором R2, R4, а диапазоны частот переключаются (Sla, Sib) конденсаторами C1...С6.

Для перекрытия всех звуковых частот от 25 Гц до 25 кГц достаточно трех диапазонов, но при желании можно добавить и четвертый, до 250 кГц (так сделано у автора). Выбрав несколько большие емкости конденсаторов или сопротивления резисторов, можно сместить диапазон частот вниз, сделав его, например, от 20 Гц до 200 кГц .

Следующий важный момент в проектировании звукового генератора - стабилизации амплитуды выходного напряжения. Для простоты здесь использован самый древний и надежный способ стабилизации - с помощью лампы накаливания. Дело в том, что сопротивление нити лампы возрастает при изменении температуры от холодного состояния до полного накала почти в 10 раз! Малогабаритная индикаторная лампочка VL1 с сопротивлением в холодном состоянии около 100 Ом включена в цепи ООС. Она шунтирует резистор R6, при этом ООС невелика, ПОС преобладает и возникает генерация. По мере роста амплитуды колебаний нить лампы нагревается, ее сопротивление растет, и ООС увеличивается, компенсируя ПОС и тем самым ограничивая рост амплитуды.

На выходе генератора включен ступенчатый делитель напряжения на резис-торах R10...R15, позволяющий получить калиброванный сигнал амплитудой от1 мВ до 1 В . Резисторы делителя распаяны прямо на выводах стандартного пятиштырькового разъема от аудиоаппаратуры. Питание генератор получает от любого источника (выпрямителя, аккумулятора, батареи), часто от того же самого, от которого питается и испытываемое устройство. Напряжение питания на транзисторах генератора стабилизировано цепочкой R11, VD1. Резистор R11 имеет смысл заменить такой же лампой накаливания, как и VL1 (индикаторная телефонная, в «карандашном» исполнении) - это расширит пределы возможных напряжений питания. Потребляемый ток - не более15...20 мА .

В генераторе можно применять детали практически любых типов, но особое внимание надо обратить на качество сдвоенного переменного резистора R2, R4. Автор применил довольно крупный прецизионный резистор от какой-то устаревшей аппаратуры, но подойдут и сдвоенные резисторы от регуляторов громкости или тембра стереоусилителей. Стабилитрон VD1 - любой маломощный, на напряжение стабилизации6,8...9 В .

При налаживании надо обратить внимание на плавность возникновения генерации примерно в среднем положении движка под-строечного резистора R8. При слишком малом его сопротивлении генерация может прекращаться в некоторых положениях ручки установки частоты, а при слишком большом может наблюдаться искажение синусоидальной формы сигнала - ограничение. Следует также измерить напряжение на коллекторе транзистора VT2, оно должно равняться примерно половине напряжения стабилизированного питания. При необходимости подбирают резистор R6 и, в крайнем случае, тип и экземпляр транзистора YT1. В ряде случаев помогает включение последовательно с лампой накаливания VL1 электролитического конденсатора емкостью не менее100 мкФ («плюсом» к истоку транзистора). В заключение резистором R10 выставляют на выходе амплитуду сигнала1 В и градуируют шкалу частоты с помощью цифрового частотомера. Она общая для всех диапазонов.

Особенностью данной схемы звукового генератора является та, что вней все построено на микроконтроллере ATtiny861 и SD карта памяти. Микроконтроллер Tiny861 ссостоит из двух ШИМ-генераторов и благодаря этому способен генерировать качественный звук, а кроме того способен управлять генератором внешними сигналами. Этот генератор звуковых частот можно использовать для проверки звучания высококачественной динамиков или в простых радиолюбительских самоделках типа электронного звонка.

Генератор звуковых частот схема на таймере

Генератор звуковых частот построен на популярной микросхеме таймере KP1006ВИ1 (почти по стандартной схеме. Частота выходного сигнала около 1000 Гц. Ее можно в большом диапазоне корректировать регулированием номиналов радиокомпонентов С2 и R2. Выходную часто-ту в этой конструкции рассчитывают по формуле:

F = 1,44/(R 1 +2×R 2)×C 2

Выход микросхемы не способен обеспечить большую мощность, поэтому на полевом транзисторе выполнен усилитель мощности.


Генератор звуковых частот на микросхеме и полевом ключе

Оксидный конденсатор С1 предназначен для сглаживания пульсаций блока питания. Емкость СЗ, подключённый к пятому выводу таймера используется для защиты от помех вывода управляющего напряжения.

Подойдет любой стабилизированный, с выходным напряжением от 9 до 15 вольт и током 10 А.

Звуковой генератор типа "ЗГ-10"

Назначение и область применения

Звуковой генератор типа "ЗГ-10" представляет собой переносный лабораторный прибор, предназначенный для получения синусоидальных напряжений переменного тока низкой частоты.

Он изготавливался по техническим условиям ТУ No 0.506.020-54 и рассчитан для эксплуатации при температуре окружающего воздуха от +10 до +30 град. С и относительной влажности до 80%.

Прибор типа "ЗГ-10" применяется для регулировки и испытания низкочастотных ступеней радиоаппаратуры в лабораторной и цеховой практике.

Основные технические характеристики

  1. Диапазон генерируемых частот от 20 до 20000 Гц разбит на три поддиапазона:
    а) 20 - 200 Гц с множителем х1;
    б) 200 - 2000 Гц с множителем х10;
    в) 2000 - 20000 Гц с множителем х100.
  2. Погрешность градуировки по частоте не превышает +-2% +- 1 Гц.
  3. Нестабильность частоты при изменении напряжения питания на +-10% от номинала не превышает +-0,2%.
  4. Изменение частоты после 30 минут предварительного прогрева не превышает 3 Гц на частоте 1000 Гц за первый час работы и 4 Гц в течение последующих семи часов работы.
  5. Максимальное выходное напряжение 150 В при максимальной мощности в 5 Вт.
  6. Выход прибора рассчитан на симметричную и несимметричную нагрузку с сопротивлением в 50, 200, 600 или 5000 Ом.
  7. Неравномерность частотной характеристики относительно нормального уровня на частоте 400 Гц не превышает +-1,5 дБ.
  8. При изменении напряжения питания на +10% выходная мощность изменяется не более чем на +5%.
  9. Коэффициент нелинейных искажений не превышает 0,7%.
  10. Индикатор выходного напряжения с пределом измерения в 60 В. Погрешность градуировки шкалы индикатора на частоте 1000 Гц и при нагрузке в 600 Ом не превышает +-5%.
  11. Выходное напряжение регулируется:

  12. а) плавно - в пределах от нуля до максимального значения;
    б) ступенями - через 1 дБ до 110 дБ при помощи двух делителей - первого, ступенями через 10 до 100 дБ и второго, через 1 дБ до 10 дБ.
  13. В приборе применяются следующие лампы: 6Ж8 - 1 шт.; 6П9 - 1 шт.; 6Н8С - 1 шт.; 6С4С - 2 шт.; 5Ц3С - 1 шт.; 6Х6С - 1 шт. и ТП-6/2 1 шт.
  14. Питание прибора осуществляется от сети переменного тока частотой 50 Гц и напряжением в 110, 127 или 220 В +-10%.
  15. Потребляемая мощность 150 Вт.
  16. Габаритные размеры прибора 598 х 357 х 293 мм.
  17. Вес прибора около 35 кг.
Схема прибора

Схема звукового генератора типа "ЗГ-10" состоит из следующих основных элементов: генератора, усилителя, индикатора выходного напряжения, выходного устройства и выпрямителя.

Генератор представляет собой двухступенчатый усилитель, собранный на лампах 6Ж8 и 6П9 и возбуждающийся при помощи положительной обратной связи, которая осуществляется фазирующей цепочкой, состоящей из сопротивлений и емкостей и обеспечивающей возбуждение генератора на заданной параметрами этой цепочки частоте. Изменение частоты генератора осуществляется при помощи изменения параметров фазирующей цепочки.

Схема генератора охвачена отрицательной обратной связью, обеспечивающей устойчивость частоты и минимальный коэффициент нелинейных искажений.

В цепи отрицательной обратной связи применяется термистор, который в качестве нелинейного сопротивления обеспечивает сохранение постоянства амплитуды генерируемого сигнала.

Усилитель собран по двухступенчатой схеме на лампах 6Н8С, 6С4С и 6С4С. Первая ступень, собранная на лампе 6Н8С, представляет собой фазоинвертор. Вторая ступень, собранная на двух лампах 6С4С, представляет собой двухтактный усилитель мощности.

Индикатор выходного напряжения представляет собой ламповый вольтметр, устроенный по схеме двухполупериодного выпрямителя, собранного на лампе типа 6Х6С. В качестве индикатора используется магнитоэлектрический прибор типа М5 класса 2,5.

Выходное устройство представляет собой два делителя, собранных по схеме моста и согласующего трансформатора. Первый делитель дает ослабление до 100 дБ ступенями через 10 дБ и второй до 10 дБ ступенями через 1 дБ.

Согласующий трансформатор служит для согласования выхода генератора с нагрузкой как симметричной, так и несимметричной сопротивлением в 50, 200, 600 или 5000 Ом.

Выпрямитель собран по двухполупериодной схеме на лампе типа 5Ц3С с двухзвенным Г-образным фильтром. Питание выпрямителя осуществляется от сети переменного тока частотой 50 Гц и напряжением в 110, 127 или 220 В.

Конструкция

Прибор собран и смонтирован на металлической вертикальной панели и горизонтальном шасси, помещенном в металлический кожух, снабженный ручками для переноски. На передней панели прибора расположены:

  1. ручка установки частоты с лимбом;
  2. индикатор выходного напряжения;
  3. индикаторная лампочка;
  4. выключатель питания;
  5. переключатель "множителя";
  6. ручка установки выходного напряжения;
  7. переключатель нагрузки;
  8. выходные клеммы;
  9. переключатель на "высокоомную нагрузку";
  10. два переключателя ослабителей выходного устройства.
Принципиальная схема звукового генератора типа "ЗГ-10"

Что такое генератор звука и с чем его едят? Итак, давайте первым делом определимся со значением слова “генератор”. Генератор от лат. generator – производитель. То есть объясняя домашним языком, генератор – это устройство, которое производит что-либо. Ну а что такое звук? Звук – это колебания, которые может различить наше ухо. Кто-то пёрнул, кто-то икнул, кто-то кого то послал – все это звуковые волны, которые слышит наше ухо. Нормальный человек может слышать колебания в диапазоне частот от 16 Гц и до 20 Килогерц. Звук до 16 Герц называют инфразвуком , а звук более 20 000 Герц – ультразвуком .

Из всего вышесказанного можно сделать вывод, что генератор звука – это устройство, которое излучает какой-либо звук. Все элементарно и просто;-) А почему бы его нам не собрать? Схему в студию!

Как мы видим, моя схема состоит из:

– конденсатора емкостью 47 наноФарад

– резистора 20 Килоом

– транзисторов КТ315Г и КТ361Г, можно с другими буквами или вообще какие-нибудь другие маломощные

– маленькая динамическая головка

– кнопочка, но можно сделать и без нее.

На макетной пл ате все это выглядит примерно вот так:


А вот и транзисторы:


Слева – КТ361Г, справа – КТ315Г. У КТ361 буква находится посередине на корпусе, а у 315 – слева.

Эти транзисторы являются комплиментарными парами друг другу.

А вот и видео:

Частоту звука можно менять, меняя значение резистора или конденсатора. Также частота увеличивается, если повышать напряжение питания. При 1,5 Вольт частота будет ниже, чем при 5 Вольтах. У меня на видео напряжение выставлено 5 Вольт.

Знаете в чем еще прикол? У девчат диапазон восприятия звуковых волн намного больше, чем у парней. Например, парни могут слышать до 20 Килогерц, а девчата уже даже до 22 Килогерц. Этот звук настолько писклявый, что он очень сильно действует на нервы. Что я хочу этим сказать?)) Да да, почему бы нам не подобрать такие номиналы резистора или конденсатора, чтобы девчата слышали этот звук, а парни нет? Прикиньте, сидите вы на парах, врубаете свою шарманку и смотрите на недовольные рожи одногруппниц (классниц). Для того, чтобы настроить прибор, нам конечно понадобится девочка, которая помогла бы услышать этот звук. Не все девчата также воспринимают этот высокочастотный звук. Но самый-самый прикол в том, что невозможно узнать, откуда идет звучание))). Только если что, я вам это не говорил).

Понравилась статья? Поделитесь с друзьями!
Была ли эта статья полезной?
Да
Нет
Спасибо, за Ваш отзыв!
Что-то пошло не так и Ваш голос не был учтен.
Спасибо. Ваше сообщение отправлено
Нашли в тексте ошибку?
Выделите её, нажмите Ctrl + Enter и мы всё исправим!